Applications of multi-beam CLEAN

Wide-band frequency synthesis where all sources have flat spectra: standard CLEAN works perfectly*.

^{*}well, almost perfectly.

Simulated e-Merlin visibilities, 5 - 7 GHz, $\delta = +35^{\circ}$, uniform weighting.

Dirty image.

But, in the real world, different sources usually have different spectra. In this case the CLEAN assumption breaks down.

Taylor-series beams for a typical e-Merlin observation.

Fundamental aim of this talk:

To convince people that there is more to parallel CLEANing than Taylor expansion in frequency space.

MFS of several narrow-band epochs

Several narrow-band epochs:

Suitable for Sault-Wieringa (Taylor expansion)

More natural: 1 beam per epoch.

Model (time-averaged flux):

Light-curve of central source:

I M Stewart – Algorithms workshop, Oxford, Dec 2008

Model (flux averaged over frequency and time):

Light-curves:

I M Stewart – Algorithms workshop, Oxford, Dec 2008

I M Stewart – Algorithms workshop, Oxford, Dec 2008

I M Stewart – Algorithms workshop, Oxford, Dec 2008

I M Stewart – Algorithms workshop, Oxford, Dec 2008

Lower left source at $(m \Delta x-0.4, n \Delta y+0.2)$:

