Phase Calibration/Correction for ALMA

B. Nikolic

Cavendish Laboratory, University of Cambridge

1st December 2008 Algorithms 2008 Workshop, Oxford

B. Nikolic (University of Cambridge)

Phase calibration for ALMA

Phase errors in the mm/sub-mm

ALMA Phase CorrectionFast-switching

Phase errors in the mm/sub-mm

- ALMA Phase Correction
 Fast-switching
- 3 WVR Phase Correction
- Algorithms!

Causes of Phase Errors at mm/sub-mm wavelengths

Possible sources:

- Electronic
- Mechanical/optical
- Timescales:
 - Hopefully from about 30 minutes to very long timescales (e.g., diurnal cycle)

Mitigation:

- Stable designs
- Phase calibration using astronomical sources

Causes of Phase Errors at mm/sub-mm wavelengths Atmospheric (tropospheric)

Two sources (both only important in first \sim km of atmosphere):

- Fluctuating quantity of water-vapour along line of sight ('wet')
- Fluctuating temperature of dry air along line of sight ('dry')

Two characteristic timescales:

• Inner: Set by the smoothing effect of the *D* = 12 m telescope beam:

$$\approx D/v \sim 1 \mathrm{s}$$

• Outer: Determined by the baseline length B:

$$5 s \lessapprox B/v \lessapprox 20$$
 minutes

Phase errors in the mm/sub-mm

Atmospheric Phase Fluctuations

► R(t)

Atmospheric Phase Fluctuations

Phase errors in the mm/sub-mm

Atmospheric Phase Fluctuations

Phase errors in the mm/sub-mm

Atmospheric Phase Fluctuations

Example of observed path fluctuations SMA, Mauna Kea, Hawaii

- Measured path fluctuation while observing a quasar
- 200 m baseline
- About 3.5 mm line-of-sight water

•
$$\sigma_{\phi} =$$
 207 μ m.

(

Simulated ALMA phase errors

Details of simulations at http://www.mrao.cam.ac.uk/~bn204/alma/

Impact of poorly corrected phase errors

General impact on science

- Phase errors increase with baseline length
 - \implies limit on maximum usable baseline length
 - \implies limit on possible resolution
- Loss of sensitivity due to de-correlation

Impact on snapshot + mosaics

Further effects due to time-variance of phase fluctuations

- Amplitude calibration
- Astrometric accuracy

Not so much a worry at sub-mm

Small field of view + Small dynamic range of sky \rightarrow less dynamic range problems due to phase errors

B. Nikolic (University of Cambridge)

Phase calibration for ALMA

ALMA Phase CorrectionFast-switching

3 WVR Phase Correction

Algorithms!

ALMA phase correction strategy

Fast-switching

- Observe nearby quasars
- Calculate antenna phase errors
- Calibration cycle down to 10–15 s (fast antennas!)
- Expect calibrators about two degrees from science target
- Can calibrate at 90 GHz and transfer up to 950 GHz

Water Vapour Radiometry

- *Measure* atmospheric properties along the line of sight of each telescope
- Use dedicated 183 GHz radiometers on each telescope
- Measurements at about 1 Hz
- Infer excess path
- Correct either in correlator or in post-processing

+ Self-Calibration in a limited number of cases

ALMA Phase CorrectionFast-switching

3 WVR Phase Correction

Algorithms!

Fast-switching phase calibration

- Use standard algorithms to determine antenna phase errors for observed visibilities
- Phase transfer from $\lambda = 3 \text{ mm}$ to observing frequency. Benefits:
 - Quasars are much brighter at $\lambda = 3 \text{ mm}$ than in sub-mm
 - Phase errors are unlikely to be large enough to cause phase wraps
 - Potential challenges:
 - Atmosphere dispersive in sub-mm so the transfer of gain solution requires modelling or itself needs calibration
 - Instrumental phase stability between $\lambda = 3 \text{ mm}$ and observing bands needs to be good
- Residual phase errors depend on atmospheric conditions and calibration cycle, but not on baseline length

Fast-switching

Simulated fast-switching phase calibration

Medium configuration, 15 s cycle

ALMA Phase Correction • Fast-switching

4 Algorithms!

Water Vapour cm/mm/sub-mm lines

1 mm water vapour

WVR Phase Correction

The 183 GHz Water Vapour Line

Blue rectangles are the production WVR filters

B. Nikolic (University of Cambridge)

Signal from two prototype WVRs mounted on SMA antennas

From the ALMA WVR prototype testing campaign in 2006

Algorithms for WVR phase correction

- δL change in excess path to antenna
- $\delta T_{\mathrm{B},i}$ change in *i*-th channel sky brightness observed by a WVR
 - w_i weight of *i*-th channel

$$\delta L \approx \sum_{i} w_{i} \frac{dL}{dT_{\mathrm{B},i}} \delta T_{\mathrm{B},i}$$
(1)

- $\delta \textit{T}_{B}$: WVR hardware design
 - Low noise
 - High bandwidth
 - High stability

- $w_i \frac{dL}{dT_{\mathrm{B},i}}$: (primarily) algorithm design
 - Optimal use of information
 - Atmospheric models+physics
 - Experience at the site
 - Ancillary' information

WVR Phase Correction

Will this work? Optimise $w_i \frac{dL}{dT_{B,i}}$ directly as a test

SMA test data, total fluctuations: σ_L reduced from 271 to 75 μm

B. Nikolic (University of Cambridge)

- ALMA Phase CorrectionFast-switching
- 3 WVR Phase Correction

WVR algorithms: available information

- Four absolute measurements of sky brightness:
 i.e., *T*_{B,i} rather than δ*T*_{B,i}
- The observed correlation between δL and $\delta T_{\rm B}$
- Ground-level temperature, pressure, humidity, wind-speed
- Information on the profile of atmospheric temperature with height from a single 60 GHz O₂ sounder
- Library of radio-sonde measurements
- Meso-scale meteorological forecast

Will we need all of this information?

- We are aiming for very challenging 2% accuracy in $\sum_{i} w_i \frac{dL}{dT_{R_i}}$
- For operational efficiency important to understand how well phase correction will work (also the opacity too of course)

Algorithm framework: Bayesian

We are developing a Bayesian framework to optimally combine all available information together with models of the atmosphere

Why Bayesian?

We are not interested in model parameters such as pressure, temperature, lapse rate, turbulent layer height, etc. All we want are the $\frac{dL}{dT_{B,i}}$

 \rightarrow Marginalise *all* model parameters, get probability distributions for $\frac{dL}{dT_{B,i}}$.

Framework features

- A model for accuracy of absolute measurements T_{B,i}
- Incorporate empirical $\frac{dL}{dT_{\text{B},i}}$ as observation
- Other information naturally fit in as priors

Example: Prediction of $\frac{dL}{dT_{B,i}}$ from WVR data only

Single, thin layer; prototype filter set

B. Nikolic (University of Cambridge)

Phase calibration for ALMA

Example: Prediction of $\frac{dL}{dT_{B,i}}$ from WVR data only

Model parameters retrieval with priors

Example: Prediction of $\frac{dL}{dT_{B,i}}$ from WVR data only

Retrieved $\frac{dL}{dT_{B,i}}$

B. Nikolic (University of Cambridge)

Phase calibration for ALMA

Challenges

- 15 km baselines, substantial elevation difference between parts of the array
 - \rightarrow need different set of $\frac{dL}{dT_{\text{B},i}}$ for each antenna
- In some correlator modes, need to apply correction in semi-real-time

$$\rightarrow$$
 need to get the $\frac{dL}{dT_{B,i}}$ right

- 'dry' fluctuations: very little direct information, need to rely on correlation with 'wet' fluctuations
- Understanding of atmospheric physics and models