
Direction-dependent effects

S. Bhatnagar NRAO, Socorro

Direction dependent effects

- Instrumental
 - Primary Beam Effects
 - Time and frequency dependent
 - Polarization response
 - Pointing Errors
 - Non co-planar baselines (w-term)
 - FPA calibration/stability
- Sky
 - Stronger and more complex at low frequencies
 - Deconvolution errors, pixelation errors
 - Spectral index variations across the sky
- Ionospheric/atmospheric

Challenges (not addressed here)

- Computing and I/O loads
 - Going after TB data size, ~10⁴ significant pixels

RFI removal

 Strong RFI: Flagging algorithms/schemes exist and work well for moderate sized database

Weak RFI

- Difficult to detect and remove
- Effects high dynamic range imaging
- Some algorithms exist

Near field problems

- RFI remains correlated
- Not the same on all baselines
- Variable in time and frequency

Measurement Equation

Generic Measurement Equation

$$V_{ij}^{Obs}(v) = J_{ij}(v,t)W_{ij}\int J_{ij}^{S}(s,v,t) \ I(s,v) \ e^{\iota s.b_{ij}} \ ds$$
Data Corruptions Sky Geometry

Corruptions: $J_{ii} = J_{i} \otimes J_{i}^{*}$ Direction independent corruptions

$$J_{ij}^{S} = J_{i}^{S} \otimes J_{j}^{S^{*}}$$

Direction dependent corruptions

- Sky: Frequency dependence: I(s, ν)=I(s, ν_θ)(^ν/_ν)
 Sky: Complex structure Sky: Complex structure
 - Representation in a more appropriate basis
- Geometrical: W-term

$$e^{\iota s.b_{ij}} = e^{\iota [ul + vm + w(\sqrt{1 - l^2 - m^2} - 1)]}$$

 The combined LHS determines "time constant" over which averaging helps

Challenges

Unknowns

- $-J_{ij}$, J^{s}_{ij} : Electronics, Primary Beams, antenna pointing, Ionosphere
 - Heterogeneous arrays (difference PB per baseline)
- $-I^{M}$: Extended emission, spectral index variations

Need efficient algorithms:

- To solve parameterized ME (Curse of Dimensionality)
- For *known* direction dependent corrections
- Better parameterization of the sky (I^{M})
 - Including frequency dependence
- Solver for the unknown DD effects (PB, ionosphere)

Computing

- Parallel computing & I/O
- Software development costs

Parameterization in conventional algorithms

•
$$V_{ij}^{Obs}(v) = J_{ij}(v,t)W_{ij}\int J_{ij}^{S}(s,v,t) I(s,v) e^{is.b_{ij}} ds$$

$$-J_{ij}^{S}(s, v, t) = PB$$
 Independent of time and Freq.

- Post deconvolution PB-correction
- Use simple PB models (mostly Gaussian fits)

-
$$I(s) = \sum_{k} \delta(x_k, y_k)$$
 Image representation in pixel basis

• Clean, MEM, and variants: Each pixel is a degree of freedom

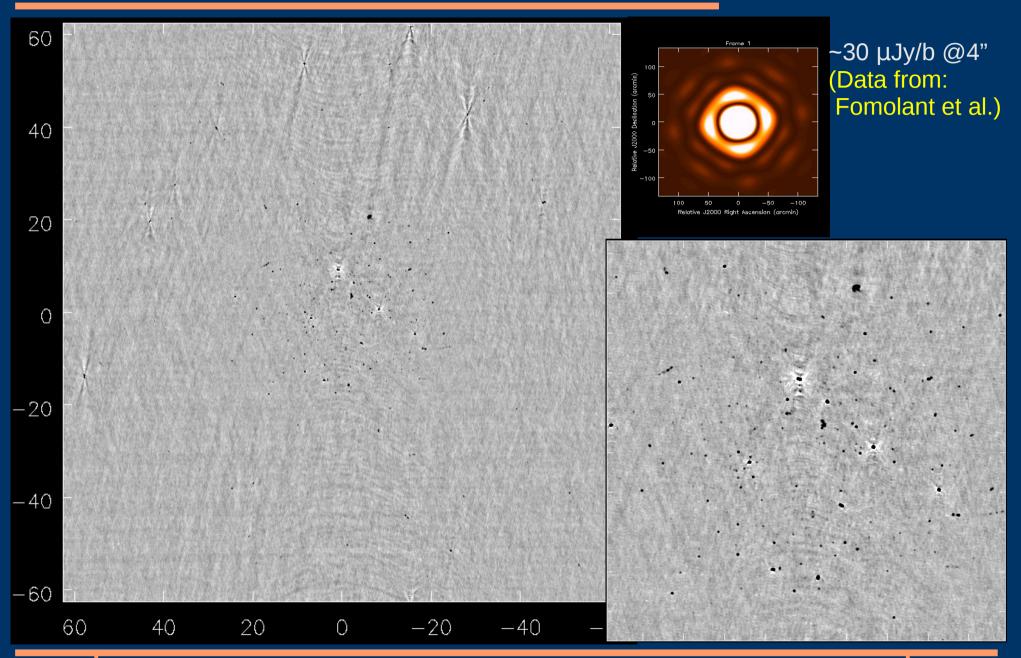
$$-J_{ij}(v,t) = J_{ij}(v)J_{ij}(t)$$
 Direction independent gains

- Single gain for the full FoV
- Direction independent polarization leakage

Algorithmic challenges

- Higher sensitivity ==> mode data + correction of more error terms
 - Imaging and calibration gets coupled
 - DD corrections can be as expensive as imaging
- More sophisticated parametrization required for the next generation telescopes
 - DD correction: PB(t, Freq, Pol.), atmosphere/ionosphere
 - Sky: Decompose the structure in scale sensitive basis
 - Sky: Parametrized for frequency and poln. Dependences
- Physically motivated parametrization
 - Algorithmic performance-measure: SNR per DoF

Recent advances

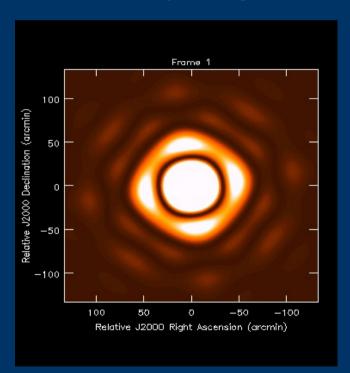

- $J_i^s(t) \neq J_j^s(t)$ (Pointing offsets, PB variations, etc.)
 - Corrections in the visibility plane
 - Scale sensitive deconvolution
 - Asp-Clean (2004), MS-Clean (2003)
 - Pointing SelfCal (2004)
 - Correction for J_{ij}^{s} during image deconvolution
 - W-Projection (2004)
 - AW-Projection (2005)
 - MS-MFS (2006-07)
 - Direct evaluation of the integral

$$V_{ij}^{Obs}(v) = J_{ij}(v,t) \int J_{ij}^{S}(s,v,t) \sum_{k} I(x_{k},y_{k}) e^{is.b_{ij}} ds$$

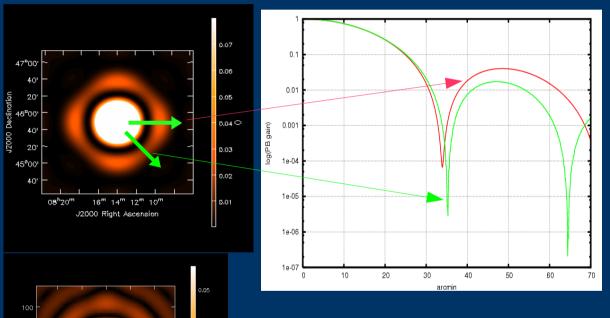
Peeling (since ?)/ VLA Squint correction (2008)

An example: VLA @ 1.4 GHz

Full beam imaging limits


- Limits due to rotation of asymmetric PB
 - Error in PB model max. @ ~10% point
 - Max. in-beam error signal @ 50% point
 - DR of few x 104: 1
 - Errors higher in the first sidelobe
- Limits due to antenna pointing errors
 - In-beam max. error signal at 50% point
 - DR of a few x 10⁴:1
 - Limits for mosaicking would be worse
 - Significant flux at half-power and side-lobes for many pointings

Primary beam effects



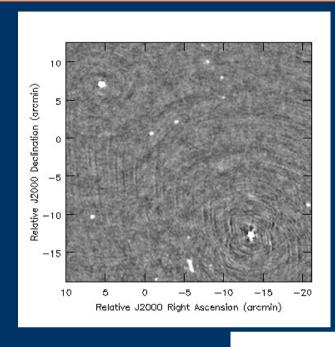
EVLA full-beam, full-band, full-pol imaging

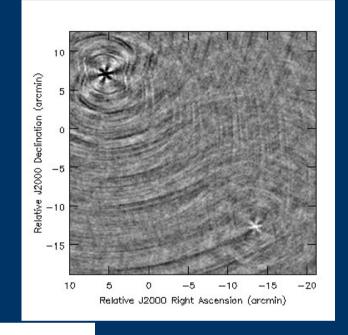
PB rotation, pointing errors

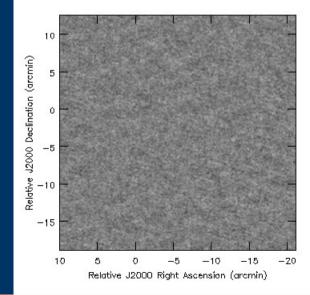
PB variation across the band EVLA: Sources move from main-lobe to side-lobes

Cross hand power pattern

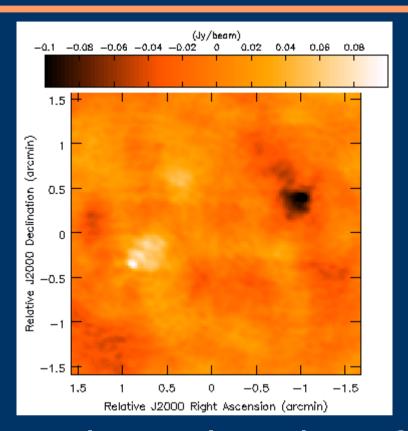
PB gain varies as a function time, frequency and direction in the sky

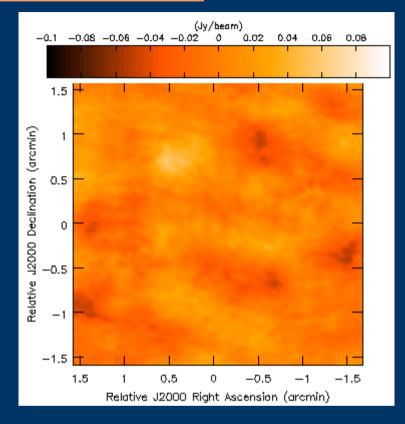

PB correction




- AW-Projection algorithm (Bhatnagar et al. A&A,487, 419, 2008)
 - Time and poln. Parametrization of the PB
 - No assumption about the sky emission
 - Scales well with imaging complexity
 - Straightforward to integrate with algorithms to correct for other errors (MFS, W-Projection, MS/Asp-Clean)
 - Requires a model for the Aperture Illumination

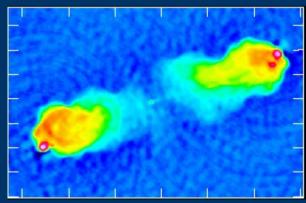
Example:VLA Stokes-I,V imaging

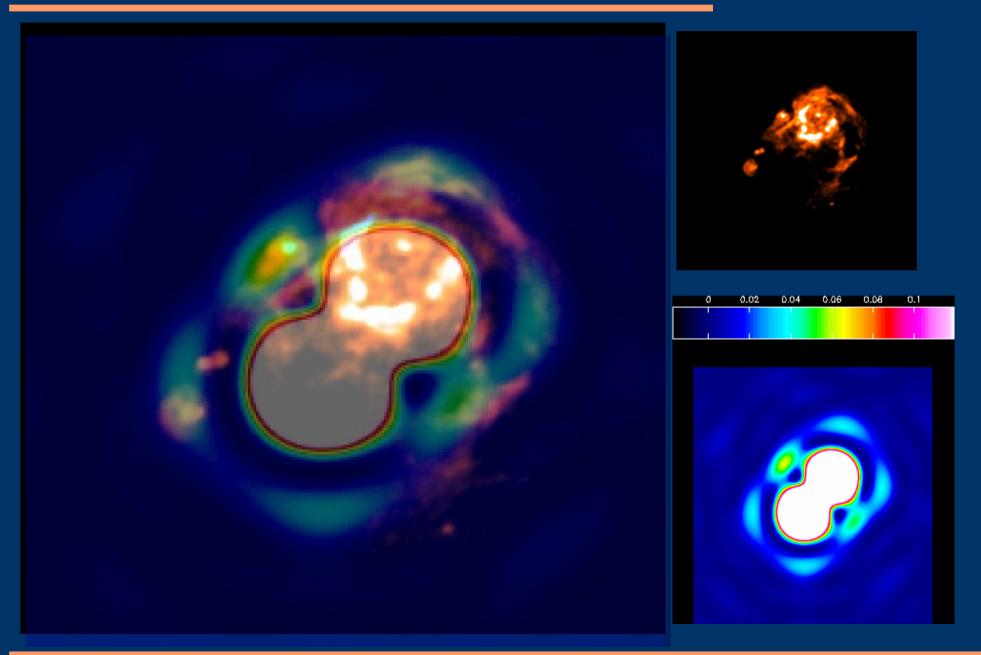




Using PB model by W. Brisken (EVLA Memo 58)

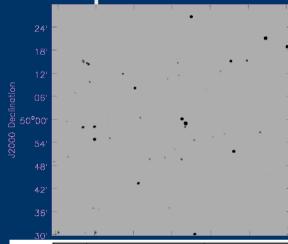
Example: Extended emission

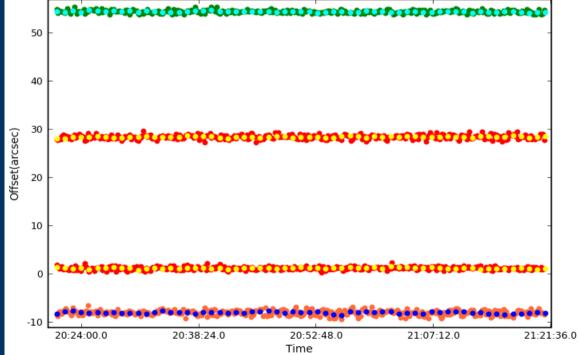



Stokes-V imaging of extended emission

- Algorithms designed for point sources will not work
- Need more sophisticated modeling of the extended emission

Example: PB effects in mosaicking

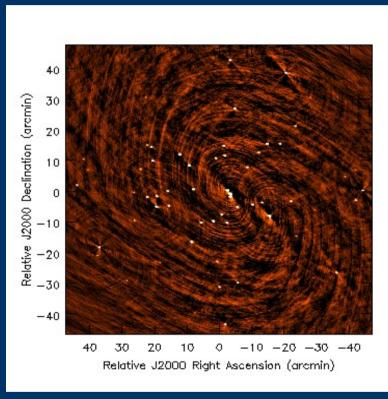



Pointing SelfCal: Solver

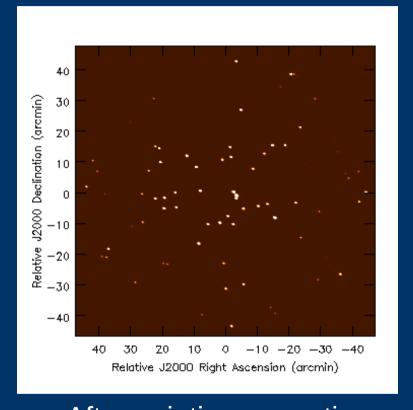
PB parametrized for pointing errors

Model image: 59 sources from NVSS. Flux range ~2-200 mJy/beam

Typical antenna pointing offsets for VLA as a function of time

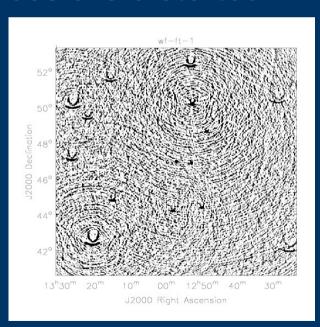

Over-plotted data: Solutions at longer integration time

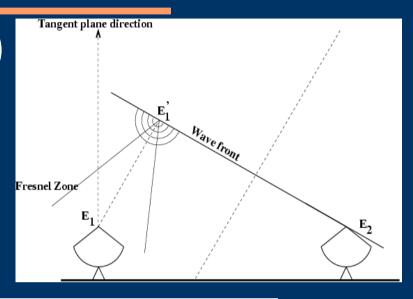
Noise per baseline as expected from EVLA

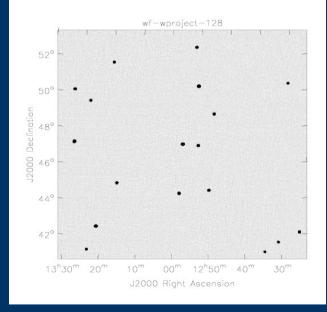

Pointing SelfCal: Correction

$$V_{ij}^{Obs}(t, \nu) = W_{ij}(\nu, t) \int PB(s, \nu, t) I(\nu) e^{\iota s.b_{ij}} ds$$

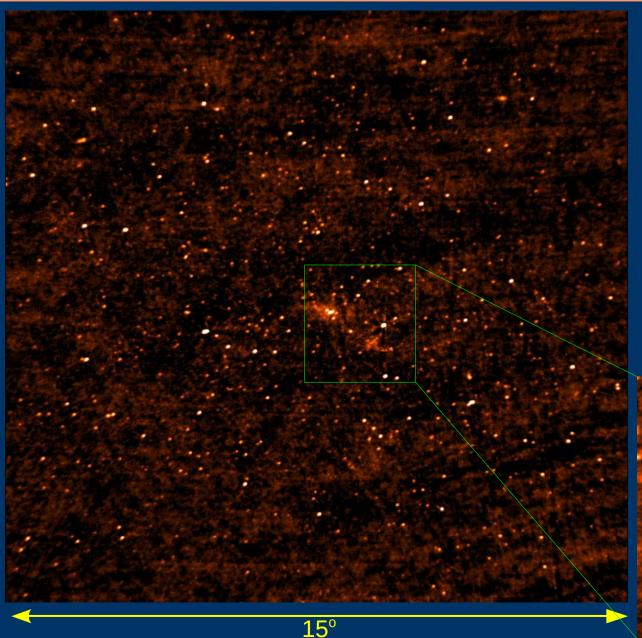
- No pointing correction:
- RMS ~ 15µJy/b

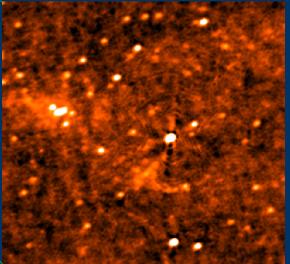

- After pointing correction:
- •RMS ~ 1µJy/b


(Bhatnagar, Cornwell & Kolap, EVLA Memo #84/paper in prep.)


W-Projection algorithm

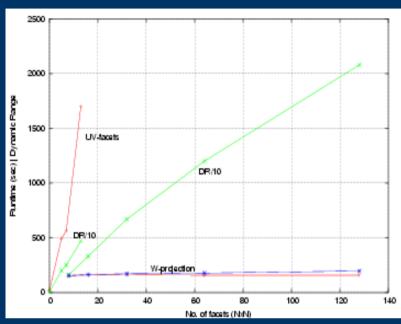
- $V(u, v, w) = \overline{G}(u, v, w) * V(u, v, w = 0)$ where $\overline{G}(l, m, w) = e^{2\pi \iota \left[w[\sqrt{1-l^2-m^2}]\right]}$
- $E_1 = E'_1(u,v,w)$ propagated using Fresnel diffraction
- Away from the phase center, sources are distorted




(Cornwell, Kolap & Bhatnagar, EVLA Memo (2004), IEEE Special Issue on RA, (in press))

Example: VLA @ 74 MHz

- Coma cluster at 74 Mhz/VLA
- 30 arcsec resolution, RMS ~30mJy/beam
- Imaged using the W-projection algorithm (Golap)



Computing

Imaging scaling laws

- Non co-planar baseline correction
 - W-Projection: $(N_{wproj}^2 + N_{GCF}^2)N_{vis}$
 - Faceting: $N_{facets}^2 N_{GCF}^2 N_{vis}$
- AW-Projection: N²_{GCF} * N_{vis}
- Peeling:
 N_{comp} * N_{vis} * ?

Scaling laws for DD solvers

- FFT-based transforms: $N_{GCF}^2 * N_{vis} * N_{iter} * N_{params}$
- DFT-based transforms: N_{comp} * N_{vis} * ? * N_{iter} * N_{params}
- $-N_{vis}$: 10^{8-10} , N_{GCF}^2 : 50-100 , N_{comp} : 10^{4-5}

TeraByte Initiative

- Initial tests: 512 channel, 4 Pol, T_{int} = 2s, VLA B-array, data size ~100GB
 - Standard continuum imaging: 4K x 4K x 512, Stokes-I
 - Image size on disk: 3 x 32GB
- Timing
 - Flagging (quack only) : 1h
 - Calibration solver G-Jones: 2h15m
 - Calibration solver B-Jones : 2h35m
 - Correction : 2h
 - Imaging : 20h
 - Export FITS : 2h
- Effective data I/O: ~800 GB

Near future data sizes

- Data I/O: Computing ~ 3:2 (at least)
- Expected average data rates about 10x larger
- Manual processing (data flagging, calibration and imaging) not an option
 - Need robust and efficient algorithms
 - Need robust heuristics
 - Need pipe line processing
 - Need all of this to run in a parallel computing environment
- Interoperability
 - Possible now via FITS
 - Data sizes is the problem!
 - Lower level software exchange is better
 - Sociological rather than technological problem!