ALMA Pipeline Heuristics

Frederic Boone - LERMA

Lindsey Davis - NRAO

John Lightfoot - UKATC

Dirk Muders - MPIfR

Christine Wilson - McMaster

Friedrich Wyrowski - MPIfR

Luis Zapata - MPIfR

The Mission

 Automatic reduction of ALMA data; single field interferometry, mosaics, single-dish

Useful publishable Quick look, system health

Observers must trust the results

Transparent verifiable

- Easy to use, configure, modify
- Ready for 'early science'

The Tools

- Casapy Python binding of CASA tools
- Python
- numpy array operations
- Matplotlib display
- Others?

Need to do

- Automatically detect and flag bad data
- Find the 'best' reduction method -

```
Bandpass Calibration:
channel
polynomial fit (degree?, bandpass edges?)
quality of solution?
```

Phase Calibration: interpolate / spline fit / combine spectral windows

 Find 'best' way to calculate result; e.g clean map - code it

Design

- 'Recipe' specifies a series of reduction 'stages'
- Stage can flag data, search for the 'best'calibration method, calculate a result

Stage sequence

Improve flagging
Improve calibration method

 Each stage is an object. The 'bandpass calibration' and 'phase calibration' are objects. O-O encapsulation helps keep code manageable

'Flagging' stage

Data 'view'

- -Direct access to MeasurementSet TaQL
- -Modified raw data e.g. median across channels for each baseline/timestamp
- -Processed data e.g. antenna based gain amplitudes for each timestamp
- -Calibration results, as would be applied to data
- -Metadata; Tsys, water vapour column
- -Flag specific data, e.g. autocorrelations
- -Calculate statistics of view, flag outliers
- -Detect bandpass edges
- Dioploy
- -Image
 - -line plot
 - -'before' and 'after' flagging display, data colour keyed to reason for flagging

Flagging

Display

'Best' Method Stage

Currently prototype for bandpass calibration

Scattergun appoach - try a variety of methods - test - adopt best.

Variations in: G_t (phasing up of data before calculating bandpass)

Channel calibration

Polynomial fit calibration - poly degree

Test by calculating a 'figure of merit' for each calibration method:

Calibrate a test field (different to the bandpass data)

Measure flatness of result

Adopt method producing lowest figure of merit for future calibrations.

Result Stage

For example, a clean map/cube

Specify the Python class to calculate the clean image

Python objects to supply the bandpass calibration and the phase calibration are passed as parameters

Basically a 'canned' method for calculating the result - library of these

Status

- Recipes for VLA and Plateau de Bure data
- Recipe for 'quick look'
- Prototype mosaic recipe
- Next, implement selection of 'best' method for phase calibration