

3rd (and 4th) Generation Calibration

Jan Noordam ASTRON

Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands

ASTRON[®] The structure of this talk

- Posted title: "The Minimum Ionospheric Model."
- This will be discussed, but in a slightly wider context.
- The problem: The Telescope Bubble
 - The mismatch between the present glut of new and upgraded radio telescopes, and the available people and tools to operate and use them.
- A mild critique of how we do things
- Some suggestions

ASTRON[®] The structure of this talk

- Posted title: "The Minimum Ionospheric Model."
- This will be discussed, but in a slightly wider context.
- The problem: The Telescope Bubble
 - The mismatch between the present glut of new and upgraded radio telescopes, and the available people and tools to operate and use them.
- A mild critique of how we do things
- Some suggestions
- As a reward for your indulgence, I will talk only 10-15 minutes, and give the rest of my time to Oleg, who will cheer you up again.

- Simplest: Treat the ionospheric phase (and Faraday rotation) as uv-plane effects
 - Antenna-based, but constant over the FOV
- Improvement: Field-based calibration (Bill Cotton):
 - Uses source position variations in the image plane (snapshots). Operational (VLA 74 Mhz). Works for baselines < 10km
- Next step: SPAM (Huib Intema):
 - Solves for antenna phases in the uv-plane. Works for longer baselines.
- Next step: Minimum Ionospheric Model (MIM)
 - Fully general. Minimum nr of parameters, and minimum assumptions about the 3D ionosphere. Allows combination of astronomical and GPS data.

You can only correct uv-data for a single point in the sky

ASTRON[®] 3rd generation calibration

- Deals with image-plane effects (l,m,f,t)
 - Restless Ionosphere
 - Wobbly Station Beam Shapes
- It is needed for the new telescopes
 - And would be nice for the existing ones
- But: Many more parameters to be solved for
 - Large increase in processing
 - Is there sufficient information?
- Not easily implemented in the existing reduction packages
- It is more complex, and therefore (even) less flexible than existing software

ASTRON[®] 4 generations of calibration

- 1st generation (<1980): Rely on instrumental stability over 12 hours
 - dynamic range 1:100
- 2nd generation (1980-): Selfcal, use bright source(s) in the field to solve for uv-plane effects
 - dynamic range: 1:5.000.000 (WSRT)
- 3rd generation (2010-): Image-plane effects
 - station beamshapes
 - ionosphere (phase and Faraday rotation)
- 4th generation (2012-): Statistical analysis of residuals
 - 3rd generation calibration creates the conditions

A glut of new radio telescopes W LOFAR NO

- 1956: Dwingeloo, Jodrell Bank
- 1960: Cambridge
- 1970: WSRT
- 1980: VLA, MERLIN
- 1990: ATCA, GMRT
- 2000: VLBA, GBT, EVN
- 2010: LOFAR, ALMA, eVLA, eMERLIN, ASKAP, MeerKat, ATA, MWA, LWA, WSRT/APERTIF, PAST, PAPER, FAST,
- 2020: SKA (the telescope to end all telescopes)

- Money: OK, but underfunding is routine
- Hardware: OK, but cheap junk (necessarily)
 - (too?) many calibration parameters
- Software: A BIG problem
 - algorithms
 - processing power
 - calibration information
- Users: Too few, too spoiled, too distracted
- Developers: Too few, too scattered, not users
- The Way We Do Things: Subprime

- There are very few "gen 3" developers in the world
- Will there be enough of them?
- They are not active/experienced users
- They do not work together
- Active/experienced users are not involved
- Innovation (and debugging!) always takes forever
- - As a community, we have feet of clay
- •
- Can we afford that?

- Master craftsmen (supervisors) and apprentices
- .. cranking the handle of AIPS, MIRIAD, NEWSTAR
- .. all of which have been frozen for years
- .. in which it is virtually impossible to implement new ideas
- .. let alone quickly
- Very few people know what these packages do exactly
- .. and how
- All are 2nd generation, without explicit M.E.
- A tribal system, with little interaction between "package-tribes"

- Jim Hacker (Yes Minister): "If you want change in British politics, you have to start a new party"
- In our little world: "If you have a new idea, you have to create a new reduction package to implement it"
 - I have done it twice (2.5?), and I am getting tired of it
- Even when the writers of AIPS, MIRIAD, NEWSTAR, DIFMAP were young and vigorous, it took forever to get your idea implemented

- The users are clustered in tribes, each cranking the handle of their favourite package, and accepting the result.
 - The AIPS tribe (80%, like Windows)
 - The MIRIAD tribe (20%, like MAC)
 - The DIFMAP tribe (?)
 - The NEWSTAR tribe (1 user)
 - The CASA tribe (?)
- These packages have been VERY successful!
- But new users are locked into these tribes
- The supervisors are beginning to realize that they are part of the problem....

The existing instruments (WSRT, VLA, VLBI, GMRT) are performing way below their real capabilities because there are too many obstacles to rapid experimentation

ASTRON[®] The Curse of Data Volume

- The data volume will be so large that it can only be processed once before it is thrown away
- Will that be the Standard Reduction?
- Or will it be possible to impose your own scheme?
 If so, how do you develop (and test!) your scheme
 - And how does it get implemented on the Big Machine?
- Again: What is our track record here?

- AIPS is so widespread that it is virtually a common language
- It is possible to get Eric Greisen (63) or Wim Brouw (67) or Bob Sault (55) to implement new ideas in AIPS, NEWSTAR or MIRIAD respectively
- Most supervisors customize their favorite package by means of scripts
- Some modules and the MS (the uv-data file) of AIPS++/CASA are widely used as common tools
- There are data-converters between the packages
- We now interact at conferences and workshops
- We have the Measurement Equation

- Let's work together
 - Let's try again, after learning from AIPS++
- But: Can we only change our ways after the shit hit the fan?
- And will we then get still the chance?
 - After all, we are not bankers
- How do we make people want to work together?
 - By making it worth their while

ASTRON[®] Get the Wave Functions to overapper N

- a common language (M.E.)
- exchange of scripts
- exchange of tools/modules
- constructive competition
- get the maximum number of people involved in the thinking and tinkering
 - 500 BC: alphabet, cheap paper, leisure?
 - 1500 AD: reformation, reading, book printing
 - 1850 AD: machine operators, technical education
 - 2000 AD: internet...
- So: Get the wave-functions to overlap, but avoid Bose-Einstein condensate. Entanglement?

- Adopt the Measurement Equation as a Common Language for all telescopes
- Adopt the MatLab/Python software model
 - A robust kernel, surrounded by user contributions
- Develop a Universal Processing Language (UPL)
 - Start from a combination of ParselTongue and TDL
- Require all (new) telescopes to accept UPL scripts for their processing
- Recognize that there a three pillars (calibration, imaging and data-handling), and act accordingly

ASTRON[®] Black-belt user-developers

- Liberate the user by reducing the size of the units he can manipulate with scripts
- Provide tools for generating complicated scripts
- Provide efficient uv-data handling tools
 - to reduce the size of experimentation data-sets
 - to combine data-sets, e.g. from different telescopes
 - to lessen the burden of pre-processing (e.g. flagging)
 - etc, etc
- visualization, visualization, visualization
- provide good simulation tools
- Set up an efficient script exchange mechanism
- Ideally, a new idea should be implemented and tested the same day

- We must recognize that, as a community, we have a bit of a problem
- .. and that we had better address it in some way
- .. before all these new telescopes overwhelm us

Thank You