

VLBA SENSITIVITY UPGRADE REQUIREMENTS

R. Craig Walker NRAO, Socorro NM

VLBA SENSITIVITY UPGRADE

- Increase bandwidth to 1 GHz (4 Gbps)
 - Current bandwidth 32 MHz sustainable, 128 MHz peak
 - Sensitivity increase by factor >5 (sustainable rates)
 - New digital backend (DBE)
 - New recording system (Mark5C)
 - New software correlator (DiFX)
 - The major cost is disk supply
- Improved 22 GHz amplifiers
 - About 38% sensitivity gain
 - MPIfR funding

UPGRADE STATUS

- 22 GHz improvement finished Jan. 2008
- ROACH board for the DBE under test
 - Operations software and FPGA personalities needed
- Mark5C Most hardware ready, needs 10 Gb ethernet interface and control software
- DiFX correlator working
 - Initial cluster was purchased
 - Operations software under development
- Expect usable system in summer 2009
 - Disk supply for full operations ~2011
 - Funding needs to be identified

DATA SET SIZES

Observation	Bandwidth	Channel	Average	Total size
	(MHz/pol)	Bandwidth	Time	(Gbytes)
		(MHz)	(sec)	Full stokes
Current Continuum	32	0.5	2.0	2
Upgraded	512	0.5	2.0	32
Continuum				
Spectral line	150	0.015	2.0	160
(Water	(2000	(0.2 km/s)		
magamaser)	km/s)			
Full primary beam at 5 Ghz	512	0.0058	0.017	325000

Algorithms Needed ASTROMETRY

- Astrometry is one of the most important observation types for the VLBA
- Goal to reach 5 μas accuracy relative to calibrator
- Improved troposphere calibration
 - Use numerical weather models
 - Improved methods to use calibrators
- Improved ionosphere calibration
 - Better ionosphere models from GPS etc.

Algorithms Needed Imaging with Sparse UV Coverage

- MFS
 - Must deal with highly variable spectral index
 - Use multiple bands?
- Robust self-cal/imaging convergence
 - Problem is with complex sources
 - Many iterations make no, or negative progress
 - NNLS? Other algorithms
 - Would like to automate, but difficult now
- Already use robustness and multi-scale clean

AN EXAMPLE

- Nearing the complexity limit with 45 baselines
- 23 full-track image stack M87 at 43 GHz

Algorithms Needed WIDE FIELD IMAGING

- Data sets and images are too big with methods used on smaller baselines
- Typical methods now:
 - Multiple correlation phase centers
 - Target sources seen in lower resolution images
- Is there a better way?

Algorithms Needed VARIABLE SOURCES

- Some VLBI sources change during the observations (eg. SS433)
- Typical methods now:
 - Image from short periods of data (poor UV cover)
 - Restrict resolution
- Would be better to include the source changes in the imaging process.
 - This might be related to MFS with variable spectral index

Algorithms Needed EVPA CALIBRATION

- All VLBI calibrators are variable and resolved
- VLA monitoring helps, but many sources vary too fast for the current style
- Alternatives (surely there are more)
 - Use cross-hand autocorrelations
 - Use pulse cal tones or transmitted signals
 - Improve the monitoring of a few sources
 - Calibrate carefully once and assume constant

ODDS AND ENDS

- Data formats for pulsar bins
- Facilitate movie making
- "CALC in AIPS" (or whatever package)