Squint, pointing, peeling and all that Jazz

Imaging with high dynamic range

- Dynamic range is the ratio of the observed signal to the noise.
- Fidelity is the ratio of the true sky signal to the noise
- These are limited by errors
 - Random
 - Systematic
 - Absence of measurements
 - Malfunction

EVLA observations will be limited often by systematic errors

Formal Description (simple version)

For small fields of view, the visibility function is the 2-D Fourier transform of the sky brightness:

$$V(u,v) = \int I(l,m) \cdot e^{\int .2\pi . \left(ul + vm\right)} dl.dm$$

We sample the Fourier plane at a discrete number of points:

$$S(u,v) = \sum_{k} w_{k} \cdot \delta(u - u_{k}) \cdot \delta(v - v_{k})$$

So the inverse transform is:

$$I^{D}(x,y) = F^{-1}[S(u,v)\cdot V(u,v)]$$

Applying the Fourier convolution theorem:

$$I^{D}(x,y) = B(x,y) \otimes I(x,y)$$

where B is the point spread function:

$$B(x, y) = F^{-1}[S(u, v)]$$

Real Arrays

Each beam is offset from the nominal pointing center by:

 $\Theta_{\rm S} = \pm \ 237.56 \ (arcsecond/meter) \ \bullet \lambda$ (a beam squint of 1.70' for $\nu = 1.4$ GHz).

This leads to a fractional value of: Squint / FWHM = 0.0549 ± 0.0005 Also polarization coupling; these errors vary with elevation, temperature, time

Real Arrays: Measurement Equation

Actual observations measure:

$$V_{ij}^{Obs} = M_{ij} \int M_{ij}^{Sky}(s) I(s) e^{2\pi i s b_{ij}} ds$$

- where V_q^{obs} is the full-polarization visibility vector,
- $M_{q}(s)$ and $M_{q}^{so}(s)$ are matrices describing directionally-
- independent and directionally-dependent gains, I describes the full-polarization sky emission, s is the position vector and b_{ii} denotes the baseline.

High-accuracy imaging

- Initialize: Set of images (facets, planes if using w-projection)
 - Re-center facets, add new facets
- Deconvolve, update model image
- Compute residual visibilities accurately corrections go here!
- Compute residual images
- Back to deconvolution step, or
- Self-calibration
- Peeling
- Back to beginning unless residuals are noise-like
- Smooth the deconvolved image, add residual image

Even off-centering by 0.01 pixel limits dynamic range.

Even off-centering by 0.01 pixel limits dynamic range.

- Even off-centering by 0.01 pixel limits dynamic range.
- Observations at half-power are limited by the squint

Example: $3C84 (\lambda \sim 21 \text{cm}, B \text{ array})$

- Even off-centering by 0.01 pixel limits dynamic range.
- Observations at half-power are limited by the squint

- Even off-centering by 0.01 pixel limits dynamic range.
- Observations at half-power are limited by the squint

- Even off-centering by 0.01 pixel limits dynamic range.
- Observations at half-power are limited by the squint
- After full-correction, dynamic range is limited by coverage
- Dynamic range can be increased by dropping baselines.
 - But Fidelity is surely lowered!

Observing with Squint: The IC 2233 / Mk 86 field

Observing with Squint: The IC 2233 / Mk 86 field

- IC 2233 is an isolated superthin galaxy (D \sim 10.5 +/- 1 Mpc)
- Mk 86 is a blue compact dwarf galaxy (D ~ 7 +/- 1 Mpc)
- They were believed to be an interacting pair
- Key experimental points:
 - The Field contains 2 "4C" sources so high dynamic range was necessary
 - The VLA suffers from Beam-Squint which leaves behind spurious signals
 - Small errors in the continuum emission can mask spectral line emission (errors cause ripples, chromatic aberration leads to spurious spectral features)
 - There are ghost sources at the band edges (rms higher in edge channels)

Ghosts: Spectral ripples

Channel 2

(of 86)

Channels 2-12 + 67-85

Cannot be corrected easily as amplitude depends on the phase of the *uncalibrated* visibility. It cancels at the phase center.

The final spectral cube

"Movie" showing a series of consecutive channel images of IC 2233 & Mk 86. Notice the ghost images in the first and last few channels.

IC 2233 & Mk 86: Standard continuum

 $\sigma_{\rm I}$ = 121 μ Jy/beam;

 $\sigma_V = 251 \,\mu Jy/beam$

Obit imaging of IC 2233 & Mk 86: intermediate steps

IC 2233 & Mk 86: intermediate steps

IC 2233 & Mk 86 field: Squint corrected

$$\sigma_{\rm I}$$
 = 113 μ Jy/beam;

$$\sigma_V = 104 \,\mu Jy/beam$$

Other effects: Pointing corrections?

- It would seem possible (in principle)
 - Demonstrated on simulations (point sources, perfect calibration)
- But, the correction is not orthogonal to Amplitude selfcalibration
 - Likely always dominated by one source (as in IC2233)
 - Need correction of other effects too (extended emission)
 - SNR deprived!
- It would seem best to point the VLA better!
 - Better understanding of antennas and pointing equation
 - Might need reference pointing for high dynamic range (always?)

Other effects: Non ideal primary beams

- Hard to measure the primary beam with high precision
 - Antennas deform with changes in elevation, temperature,...
- But, it is needed for high dynamic range imaging
 - Errors are likely dominated by a few sources (as in IC2233)
- Better (stiffer) antennas would help
- It is possible to correct a few sources with "peeling" algorithms

Non ideal primary beams: Peeling

- Limited Peeling can help
 - Important to avoid ghosts: Must subtract non-peeling sources first
 - Undo (self)-calibration, subtract peeled source from original visibilities
- Operate on several sources in succession
- It is possible to iterate on the lot
 - Easier on strong sources but beware of the noise bias...
 - Appears to work on suitably long timescales
 - Hard to do on intermediate-strength sources
 - Hard to do on short timescales
- Limited by SNR, works only on sufficiently strong sources
 - Expensive

IC 2233 & Mk 86 field: Squint corrected + peeled

 $\sigma_{I} = 101 \,\mu\text{Jy/beam};$

 $\sigma_V = 100 \,\mu Jy/beam$

IC 2233 & Mk 86 field: A comparison

IC 2233 shows corrugations in HI!

(L. D. Matthews & JMU, AJ 135, 291, 2008; ApJ 688, 237, 2008)

UGC 10043

UGC 10043 from Sloan (SDSS)

UGC 10043: A harder case?

3C 324

at ~1.5%

of P. Beam

Uncorrected sidelobes induce spurious spectral signatures

UGC 10043

UGC 10043: total HI and Moment-I

Acknowledgements

I have benefited from many conversations with Bill Cotton, Tim Cornwell, Sanjay Bhatnagar and Ed Fomalont.

VLA squint characterization and algorithmic procedures in collaboration with Bill Cotton using Obit.

Uson & Cotton, Astron. & Astrophys. 486, 647 (2008)

Cotton & Uson, Astron. & Astrophys. 490, 455 (2008)

Obit Memos (www.nrao.edu/~bcotton/Obit.html)

Research on Superthins in collaboration with Lynn Matthews

Uson & Matthews, Astron. J. 125, 2455 (2003)

Matthews & Uson, Astron. J. 135, 291 (2008)

Matthews & Uson, Astrophys. J. 688, 237 (2008)