Wide-field imaging at mm-wavelengths

Jérôme PETY IRAM & Obs. de Paris

Imaging and Calibration Algorithms, 1–3 Dec. 2008, Oxford

Observing setup: I. Interferometry

- Stop-and-go mosacing setup:
 - Loop around field positions \Rightarrow similar *uv* coverage per field;
 - Contiguous time per field: Compromise between
 - * Need of consistency between fields;
 - * Minimization of dead times due to acceleration/deceleration.

- Example (setup during 8 hours)
 - 7 fields observed 3 minutes per fields in each loop;
 - Calibrator observed every 21 minutes;
 - Pointing and focus checked every hour.

Observing Setup: II. Single-Dish

- On-The-Fly setup:
 - IRAM-30m resolution at 115 GHz: 22".
 - Raster scanning in RA and then Dec
 - * Speed: 3"/second;
 - * Dump time: 1 second \Rightarrow 7 points/beam;
 - Separation between rasters: $10'' \Rightarrow$ Nyquist sampling.
- Calibration:
 - ON-OFF switching;
 - Hot/cold/atm measurement every 15 minutes;
 - Chopper wheel method;
 - Factor from T_A^* to T_{mb} : F_{eff}/B_{eff}

Short-Spacings Processing: I. Pseudo-visibilities

From $I_{\text{meas}} = B_{30\text{m}} \star I_{\text{source}} + N$ To $V_{\text{pseudo}}(u, v) = \text{FT} \left\{ B_{\text{primary}}^{15m} \cdot I_{\text{source}} \right\} (u, v) + N$

- 1. Gridding + Apodization;
- 2. Deconvolution of B_{30m} in uv plane;
- 3. Multiplication by B_{primary}^{15m} in image plane;
- 4. Sampling of pseudo-visibilities in uv plane.

Wide-field imaging at mm-wavelengths

Short-Spacings: II.1 Merging (Amplitude cross calibration)

- Amplitude cross calibration:
 - Extremely important (wrong \Rightarrow distortion);
 - Difficult to achieve (no overlap).
 - \Rightarrow Careful independent work needed.
- Outlier points have extremely low weights \Rightarrow No need to clip them out.

Short-Spacings:

II.2 Merging (Weight density and dirty beam shape)

- Dirty beam = FFT of weight density;
- Single-dish total weight: A free parameter (as long as it is down-weighted...)

⇒ Single-dish total weight set to get a roughly Gaussian shape for the circularly averaged weight density.

- Minimum visual change of the dirty beam;
- Dirty beam integral > 0 after addition of short-spacings.

Imaging: Dirty beams

One dirty beam per field (directly the final image size): I_i = B_i * (D_i.I_{source}) + N_i.

Imaging: Dirty image and noise (without short-spacings)

-0.5

— 1

• One dirty image per field (directly the final image size): $I_i = B_i \star (D_i \cdot I_{\text{source}}) + N_i$.

- Linear combination (optimal from signal-to-noise ratio point of view):
 - Signal:

$$S(\alpha,\beta) = \frac{\sum_{i} \frac{B_{i}(\alpha,\beta)}{\sigma_{i}^{2}} I_{i}(\alpha,\beta)}{\sum_{i} \frac{B_{i}^{2}(\alpha,\beta)}{\sigma_{i}^{2}}};$$

Noise:

$$N(\alpha,\beta) = 1 \left/ \sqrt{\sum_{i} \frac{B_i^2(\alpha,\beta)}{\sigma_i^2}} \right;$$

- Signal-to-Noise Ratio: $SNR(\alpha,\beta) = \frac{S(\alpha,\beta)}{N(\alpha,\beta)}.$

Wide-field imaging at mm-wavelengths

Imaging: Dirty image and noise (with short-spacings)

6

4

2

One dirty image per field (directly the final image size): I_i = B_i * (D_i.I_{source}) + N_i.

- Linear combination (optimal from signal-to-noise ratio point of view):
 - Signal:

$$S(\alpha,\beta) = rac{\sum_{i} rac{B_{i}(\alpha,\beta)}{\sigma_{i}^{2}} I_{i}(\alpha,\beta)}{\sum_{i} rac{B_{i}^{2}(\alpha,\beta)}{\sigma_{i}^{2}}};$$

– Noise:

$$N(\alpha,\beta) = 1 \left/ \sqrt{\sum_{i} \frac{B_i^2(\alpha,\beta)}{\sigma_i^2}} \right;$$

- Signal-to-Noise Ratio: SNR $(\alpha, \beta) = \frac{S(\alpha, \beta)}{N(\alpha, \beta)}$.

Deconvolution: I. Theory

- Same as single field except:
 - The CLEAN components are searched on the SNR map;
 - The residual and SNR maps are iterated as:

*
$$S_k(\alpha, \beta) = S_{k-1}(\alpha, \beta) - \frac{\sum_i \frac{B_i(\alpha, \beta)}{\sigma_i^2} \gamma I_k}{\sum_i \frac{B_i^2(\alpha, \beta)}{\sigma_i^2}}$$

with $I_k = B_i \star \{D_i(\alpha_k, \beta_k).I_k.\delta(\alpha_k, \beta_k)\}$ and $\gamma \sim 0.2$;
* $SNR(\alpha, \beta) = \frac{S_k(\alpha, \beta)}{N(\alpha, \beta)}$.

Deconvolution: II.1 Practice (Without short-spacings)

Deconvolution: II.2 Practice (With short-spacings)

Deconvolution: III.1 ALMA alone

Deconvolution: III.2 ALMA + ACA Short-Spacings also help at large *uv* radius

Wide-field imaging at mm-wavelengths

Signal-to-Noise Ratios

Fidelities: I. Image plane

Wide-field imaging at mm-wavelengths

Fidelities: II. uv plane

Wide-field imaging at mm-wavelengths

Mosaicing: A standard observing mode An example among many: The Horsehead PDR

Wide-field imaging at mm-wavelengths

Next step: Interferometric On-The-Fly

• N.Rodriguez-Fernandez in the framework of the European FP6 "ALMA Enhancement" grant.

Bibliography

• ALMA memos:

#386 Pety, Gueth & Guilloteau, 2001, "ALMA+ACA Simulation Tools"

#387 Pety, Gueth & Guilloteau, 2001, "ALMA+ACA Simulation Results"

#398 Pety, Gueth & Guilloteau, 2001, "Impact of ACA on Wide-Field Imaging Capabilities of ALMA"

- Data sets used in this presentation:
 - Pety, Lucas & Liszt, 2008, A&A, 489, 219, "Imaging galactic diffuse gas: Bright, turbulent CO surrounding the line-of-sight to NRAO150"
 - Pety et al., 2007, Molecules in Space and Laboratory, 13, "The Horsehead mane: Towards an observational benchmark for chemical models" and references therein.