Difference imaging and multi-channel Clean

Olaf Wucknitz wucknitz@astro.uni-bonn.de

Algorithms 2008, Oxford, 1–3 Dezember 2008

Argelander-Institut für Astronomie

Finding gravitational lenses through variability

small field in SDSS: one candidate, no lens

[Lacki et al. (2008)]

titlepage introduction summary contents

back forward

previous next

Optical difference imaging

Radio difference imaging

Related problem: combining different arrays

Notation

I(l,m) I • sky brightness distribution $\tilde{I}(u,v)$ \tilde{I} visibilities perfect measurement $ilde{I}_{\mu} = \sum_{j} A_{\mu j} I_{j}$ ★ Fourier transform $A_{\mu j} = e^{2\pi i (l,m)_j \cdot (u,v)_{\mu}}$ $\tilde{\mathbf{I}} = \mathbf{A} \mathbf{I}$ \star vectors

residuals

$$R^{2} = \left(\mathsf{AI} - \tilde{\mathbf{I}}\right)^{\dagger} \mathsf{W} \left(\mathsf{AI} - \tilde{\mathbf{I}}\right)$$

natural weighting

$$\mathsf{W} = \operatorname{diag}\left(\sigma_{j}^{-2}\right) \quad R^{2} = \chi^{2}$$

titlepage introduction summary contents

back forward

previous next

Lazy interferometrists do it in image space

 $R^{2} = \tilde{\mathbf{I}}^{\dagger} \mathsf{W} \tilde{\mathbf{I}} + \mathbf{I}^{\dagger} \mathsf{A}^{\dagger} \mathsf{W} \mathsf{A} \mathbf{I} - 2 \mathbf{I}^{\dagger} \mathsf{A}^{\dagger} \mathsf{W} \tilde{\mathbf{I}}$ expand (using w = Tr W) • define B ★ dirty beam

★ dirty map

$$\mathbf{I}_{\mathsf{D}} = \frac{\mathsf{A}^{\dagger}\mathsf{W}\tilde{\mathbf{I}}}{w}$$

residuals derived in image space

 $R^2 = \operatorname{const} + w \left(\mathbf{I}^{\dagger} \mathbf{B} \mathbf{I} - 2 \mathbf{I}^{\dagger} \mathbf{I}_{\mathsf{D}} \right)$

minimum $BI = I_D$

 $\dot{R'^2}$

CLEAN as maximum likelihood fitting

add components to the model I

minimize residuals in each step

• empty model plus component I_j

$$R'^2 = I_j^2 - 2I_j I_{\mathsf{D}j}$$

optimal flux

residuals for optimal flux

 $R'^2 = -I_{\mathsf{D}_j^2}$

→ optimal position: peak in dirty map

subtract shifted beam from dirty map, start over

previous next

Simultaneous CLEANing

- two models/maps
- combined residuals

 $R^{2} = \text{const} + w_{1} (\mathbf{I}_{1}^{\dagger} \mathbf{B}_{1} \mathbf{I}_{1} - 2\mathbf{I}_{1}^{\dagger} \mathbf{I}_{D1}) + w_{2} (\mathbf{I}_{2}^{\dagger} \mathbf{B}_{2} \mathbf{I}_{2} - 2\mathbf{I}_{2}^{\dagger} \mathbf{I}_{D2})$

- next component at same position in 1 and 2 fluxes independent
- → optimal fluxes

$$I_{D1}$$
 and I_{D2}

and $\tilde{\mathbf{I}}_2$

and I_2

 \tilde{I}_1

 \mathbf{I}_1

optimal position

maximum of

$$w_1 I_{D_1}^2 + w_2 I_{D_2}^2$$

titlepage introduction summary contents

previous next

Need for difference-CLEAN

disadvantages of simultaneous CLEANing

deconvolution errors still independent
no control over mean and difference

- alternative approach two channels I_{+} and I_{-}

$$\mathbf{I}_{+} = \frac{1}{2}(\mathbf{I}_{1} + \mathbf{I}_{2})$$
$$\mathbf{I}_{-} = \frac{1}{2}(\mathbf{I}_{1} - \mathbf{I}_{2})$$

dirty maps

$$\mathbf{I}_{D+} = \frac{w_1 \, \mathbf{I}_{D1} + w_2 \, \mathbf{I}_{D2}}{w_1 + w_2}$$
$$\mathbf{I}_{D-} = \frac{w_1 \, \mathbf{I}_{D1} - w_2 \, \mathbf{I}_{D2}}{w_1 + w_2}$$

titlepage introduction summary contents

back forward

previous next

fullscreen

D-CLEAN procedure

• next component in either \mathbf{I}_+ or \mathbf{I}_-

• residuals
$$R^2 = \text{const} - (w_1 + w_2) \times \begin{cases} I_{D_+}^2 & \text{for } + \\ I_{D_-}^2 & \text{for } - \end{cases}$$

subtract according to

$$\begin{pmatrix} \mathbf{I}_{\mathsf{D}+} \\ \mathbf{I}_{\mathsf{D}-} \end{pmatrix} = \begin{pmatrix} \mathsf{B}_{\parallel} & \mathsf{B}_{\times} \\ \mathsf{B}_{\times} & \mathsf{B}_{\parallel} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{+} \\ \mathbf{I}_{-} \end{pmatrix}$$

1

• I_+ and I_- not independent

$$B_{\parallel} = \frac{w_1 B_1 + w_2 B_2}{w_1 + w_2}$$
$$B_{\times} = \frac{w_1 B_1 - w_2 B_2}{w_1 + w_2}$$

• dirty beams

titlepage introduction summary contents

An experiment: VLA-like uv coverage, scale 1:4

titlepage introduction summary contents

Alternative methods

Alternative methods: residual errors

Combining different arrays: input

titlepage introduction summary contents

back forward

previous next

fullscreen

Combining different arrays: output

titlepage introduction summary contents

Two-channel CLEANing of real data

target lens B0218+357
two bright images
Einstein ring
two VLA-A observations
1992
2003 with Pie Town

• use 1 IF

titlepage introduction summary contents

Differencing images of B0218+357

Combined images of B0218+357

18

Test with simulated VLBA data

uv coverage and model from real observations of Virgo A (thanks to Yuri Kovalev) [details in *Kovalev et al. (2007)*]
 following slides: simulation without/with noise, two epochs, slightly different *uv* coverage

Results for simulated data: no noise

difference of Clean maps

difference-Clean

mean Clean map

titlepage introduction summary contents

back forward

previous next

fullscreen

Results for simulated data: with noise

difference of Clean maps

difference-Clean

mean Clean map

titlepage introduction summary contents

back forward

previous next

WE BETTIER

fullscreen

Alternative bases

- so far: two epochs
 - * constant part (sum)
 - * variable part (difference)
- many epochs
 - ★ constant part
 - ★ one additional part for each epoch
- continuous observation (or v instead of t)
 - ★ constant part
 - ★ linear slope
 - ★ higher derivatives
- or general orthogonal polynomials, or . . .

Constant + linear in frequency

dirty maps

$$\mathbf{I}_{\mathsf{D}}^{(n)} = \frac{\sum_{\mathbf{v}} w(\mathbf{v}) \, \mathbf{v}^{n} \, \mathbf{I}_{\mathsf{D}}(\mathbf{v})}{\sum_{\mathbf{v}} w(\mathbf{v})}$$

• dirty beams

$$\mathsf{B}^{(n)} = \frac{\sum_{v} w(v) v^{n} \mathsf{B}(v)}{\sum_{v} w(v)}$$

 convolution equation up to linear order

$$\begin{pmatrix} \mathbf{I}_{\mathsf{D}}^{(0)} \\ \mathbf{I}_{\mathsf{D}}^{(1)} \end{pmatrix} = \begin{pmatrix} \mathsf{B}^{(0)} & \mathsf{B}^{(1)} \\ \mathsf{B}^{(1)} & \mathsf{B}^{(2)} \end{pmatrix} \begin{pmatrix} \mathbf{I}^{(0)} \\ \mathbf{I}^{(1)} \end{pmatrix}$$

• previous MFS methods only use $I_D^{(0)} = B^{(0)}I^{(0)} + B^{(1)}I^{(1)}$ [Conway et al. (1990), Sault & Wieringa (1994)]

titlepage introduction summary contents

ATCA observations of Pictor-A 4800 / 4928 MHz

[data from Emil Lenc]

titlepage introduction summary contents

back forward

previous next

Pictor-A: difference 4800 – 4928 MHz

Pictor-A: correct for variability with AIPS (4800 MHz)

five epochs with ATCA (different configurations)

common model + variable parts

Summary etc

- these tasks
 - ★ difference imaging, variability
 - ★ combine different arrays / epochs
 - * wide-band imaging with spectral indices
 - ★ multi-resolution / multi-scale Clean
- have in common that

 multi-channel output is needed
 channels do not always correspond to parts of the data
 want Clean regularisation for output channels
 need to deconvolve everything simultaneously
- developing multi-channel Clean
- first tests encouraging

work in progress

Contents

- 1 Finding gravitational lenses through variability
- 2 Optical difference imaging
- 3 Radio difference imaging
- 4 Related problem: combining different arrays
- 5 Notation
- 6 Lazy interferometrists do it in image space
- 7 CLEAN as maximum likelihood fitting
- 8 Simultaneous CLEANing
- 9 Need for difference-CLEAN
- 10 D-CLEAN procedure
- 11 An experiment: VLA-like *uv* coverage, scale 1:4
- 12 Alternative methods
- 13 Alternative methods: residual errors
- 14 Combining different arrays: input
- 15 Combining different arrays: output
- 16 Two-channel CLEANing of real data
- 17 Differencing images of B0218+357

- 18 Combined images of B0218+357
- 19 Test with simulated VLBA data
- 20 Results for simulated data: no noise
- 21 Results for simulated data: with noise
- 22 Alternative bases
- 23 Constant + linear in frequency
- 24 ATCA observations of Pictor-A 4800 / 4928 MHz
- 25 Pictor-A: difference 4800 4928 MHz
- 26 Pictor-A: correct for variability with AIPS (4800 MHz)
- 27 Summary etc
- 28 Contents