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Abstract

In this paper we offer a gentle introduction to Gaussian €sses for timeseries data analysis. The
conceptual framework of Bayesian modelling for timesedias is discussed and the conceptual framework
of Bayesian non-parametric modelling presented Gaussian Processes We discuss how domain
knowledge influences design of the Gaussian Process mauigravide case examples to highlight the
approaches.
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1 Introduction

If we are to exploit the richness of scientific data availaioleis we must consider a principled framework
under which we may reason and infer. To fail to do this is twigruncertainty and risk false analysis, decision
making and forecasting. What we regard as a prerequisit@tieigent data analysis is ultimately concerned
with the problem of computing in the presence of uncertai@gnsidering data analysis under the mathematics
of modern probability theory allows us to exploit a profoudramework under which information, uncertainty
and risk for actions, events and outcomes may be uniquelyatkfi Much recent research hence focuses
on the principled handling of uncertainty for distributedahelling in complex environments which are highly
dynamic and can be communication poor, observation costlfime-sensitive. The machinery of probabilistic
inference brings to the field of timeseries analysis and toang robust, stable, computationally practical and
principled approaches which naturally accommodate thezdavorld challenges. As a framework for reasoning
in the presence of uncertain, incomplete and delayed irdtiom we appeal to Bayesian inference. This allows
us to perform robust modelling even in highly uncertainaitans, and has a long pedigree in inference. Being
able to include measures of uncertainty allows, for exammeto actively select where and when we would
like to observe samples and offers approaches by which werezadily combine information from multiple
noisy sources.

This paper favours the conceptual over the mathematidée start in the next section with a short overview
of why Bayesiarmodelling is important in timeseries analysis, culmingtin arguments which provoke us to
use non-parametric models. Section 3 presents a conceperaiew of a particular flavour of non-parametric

10f course the mathematical details are important and eldmarwould obscure the aims of this paper. The interestedereia
encouraged to read the original material, or a canonicabtesh as [1].



model, the Gaussian Process, which we argue is well-sutBahéseries modelling. We discuss in more detail
the role ofcovariance functionghe influence they have on our models and explore, by exarmgethe (ap-
parently subjective) function choices we make are in factivated by domain knowledge. Section 4 presents
real-world timeseries examples, from sensor networkspgiaoint data and astronomy, to highlight the prac-
tical application of Gaussian Process models. The moreensdtical framework of inference is detailed in
section 5.

2 Bayesian time series analysis

We start by casting timeseries analysis into the formatrefeessionproblem, of the formy(z) = f(x) + 7,

in which f() is a (typically) unknown function ang is a (typically white) additive noise process. The goal
of inference in such problems is two-fold; firstly to evaki#tte putative form of () and secondly to evaluate
the probability distribution of; for somez,, i.e. p(y|x.). To enable us to perform this inference we assume
the existence of a dataset @bservationstypically obtained as input-output paif®, = (z;,y;) for example.
For the purposes of this paper we make the tacit assumptidithé inputse; (representing, for example, time
locations of samples) are known precisely, i.e. there ifpat noise but that observation noise is present on
they;. When we come to analyse timeseries data there are two ay@®ave might consider. The first, which
here we refer to amstantaneous function mappimaadcurve fitting

Instantaneous function mapping approaches consider taeeirte of a functiory which maps some:
to the outcome variablg without explicit use of the (time) ordering of the data. This has thsitive that
x andy need not be defined as functions of time. However, it beconme mifficult to incorporate typical
timeseries domain knowledge, such as belief of smoothmegsand the folding in of knowledge relating to
gaps in the data is more difficult. The function mapping apphois typical when a static functigh: « +— y is
to be inferred from retrospective data. The mapping functionay be static, i.e. we believe that although the
observed information changes, the manner in which it maps to outcomssfixed.

Curve fitting on the other hand makes the tacit assumptionazttzady are both ordered in time. Hence
y is predicted based on observed past data. This has the kthatfihe outcome variable is treated as lying
close to a curve, which naturally takes into account thenipaf observations. The relationship betweesnd
y is hence not fixed, but conditioned on observed data whicicdilp lies close, in time, to the point we are
investigating In this paper we make the decision to conaeémiwn this approach, as we believe it offers a more
profound model for much of the timeseries data we are coedewith.

As a simple example to introduce the canonical concepts pé8lan modelling we consider a small set of
data samples, located= 0, 1, 2 and associated observed target values. Least-squaressiegr on this data
using simple model (based on polynomial splines) givestddbe curve shown as the line in the left panel of
Figure 1. We see that, naturally, this curve fits our obsedatd very well. What about the credibility of the
model in regions where we see no data, importamtty 2? If we look at a larger set of examples of curves
from the same model we obtain a family of curves which expilainobserved dat@most identicallyyet differ
very significantly in regions where we have no observatitoth interpolating between sample points, and in
extrapolation. This simple example leads naturally to ussiiering adistribution of curves Working with
this distribution over curves, each of which offers an emptéon for the observed data, is central to Bayesian
modelling. We note that curves that lie towards the edgesisfdistribution have higher average curvature
than those which lie close to the middle. There is an intintatationship between curvature, complexity
and Bayesian inference, leading naturally to posterioief®ebver models being a combination of how well
observed data is explained and how complex the explanatoctibns are. This elegant formalism encodes in
a single mathematical framework such idea®©asam'’s razoy such that simple explanations of observed data



are favoured [].
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Figure 1. A simple example of curve fitting. The left panelregents the least-squares fit of a simple spline
to the observed data (red dots). In the right panel shows pbeacarves with almost identical fit to the data as

the least-squares spline. These curves have high sipitdoise to the data yet high variability in regions of no

observations, both interpolating and, importantly fordiseries, as we extrapolate beyane: 2.

2.1 Parametric and non-parametric models

The simple example from the previous section showed that e many functions that can equally well ex-
plain data that we have observed. How should we choose frerbaWwildering array of mathematical functions
that give rise to such explanatory curves? If we have straigy gnowledge regarding a system, then this
(infinite) function space may be reduced to a single famigrhpps the family of quartic polynomials may be
the right choice. Such models are considered tpdrametrig in the sense that a finite number of unknown
parameters (in our polynomial example, these are the cieeffcof the model) need to be inferred as part of
the data modelling process. Although there is a very latgesliure (rightly so) on such parametric modelling
methods, there are many scenarios in which we have littleg gorior knowledge regarding appropriate models
to use. We may, however, have seemingly less specific domainlkdge; for example, we may know that our
observations are visible examples from an underlying @®wuich is smooth, continuous and variations in the
function take place over characteristic time-scales (@otstowly yet not so fast) and have typical amplitude.
Surprisingly we may work mathematically with the infiniteasp of all functions that have these characteris-
tics. Furthermore, we may even contemplate probabilityridigtions over this function space, such that the
work of modelling, explaining and forecasting data is perfed by refining these distributions, so focusing
on regions of the function space that are excellent contsrtdemodel our data. These functions are not of a
simple pre-defined form, with sets of parameters to be iafefunlike our simple polynomial example), this
approach is referred to as a brancoh-parametrianodelling. As the dominant machinery for working with
these models is that of probability theory, they are oftdarred to aBayesian non-parametric modelgve
now focus on a particular member, namely @Gaussian ProcesgGP).

3 Gaussian Processes
We start this introduction to Gaussian processes by comsgda simple two-variable Gaussian distribution,

which is defined for variables;, x5 say, by a mean andZx 2 covariance matrix, which we may visualise
as a covariance ellipse corresponding to equal probaloititours of the joint distributiop(z,, z2). Figure 2
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shows an example 2d distribution as a series of (blue) ielliptontours. The correspondimgarginal distri-
butions,p(x1) andp(x2) are shown as “projections” of this along theandz, axes (black). We now consider
the effect of observing one of the variables such that, fangde, we observe; at the location of the dashed
vertical line in the figure. The resultanbnditional distribution p(z2|z; = known) indicated by the (black)
dash-dot curve, now deviates significantly from the maigiriaz). Because of the relationship between the
variables implied by the covariance, knowledge of one &lsrur uncertainty in the other. To see the intimate

Figure 2: The conceptual basis of Gaussian Processes witirtan appeal to simple multivariate Gaussian
distributions. A joint distribution (covariance ellips&@rms marginal distributiong(z1), p(x2) which are
vague (black solid). Observing; at a value indicated by the vertical dashed line changeseligfé aboutzs,
giving rise to a conditional distribution (black dash-dd€howledge of the covariance lets us shrink uncertainty
in one variable based on observation of the other.

link between this simple example and time-series analysistepresent the same effect in a different format.
Figure 3 shows the mean (black line) ahd (grey shaded region) for(z1) andp(z2). The left panel depicts
our initial state of ignorance and the right panel after weesbex;. Note how the observation changes the
location and uncertainty of the distribution over. Why stop at only two variables? We can extend this ex-
ample to arbitrarily large numbers of variables, the refahips between which are defined by an ever larger
covariance. In principle we can extend this procedure tdithi€in which the locations of the; are infinitely
dense (here on the real line) and so the infinite joint distidim over them all is equivalent to a distribution over
a function space. In practice we won't need to work with sudimite spaces, it is sufficient that we can choose
to evaluate the probability distribution over the functitrany location on the real linand that we incorporate
any observations we may have at any other points. We noteiatly that the locations of observations and
points we wish to investigate the function aiat constrainedo lie on any pre-defined sample points; hence we
are working in continuous time with a Gaussian Process.woith noting now, as we will see, that the proba-
bility distribution of a function drawn from a Gaussian pess isnot necessarily Gaussiathe distribution of

a finite sample from the Gaussian Process is however, mugiieaGaussian.
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Figure 3: The change in distributions en andx, is here presented in a form more familiar to time-series
analysis. The left panel shows the initial, vague, distidns (the black line showing the mean and the grey
shading+o) and the right panel subsequent to obseringThe distribution overs has become less uncertain
and the most-likely “forecast” ofy has also shifted.

3.1 Covariance functions

As we have seen, the covariance forms the beating heart afsi@auProcess inference. How do we formulate
a covariance over arbitrarily large sets? The answer ligkefining acovariance kernel functiqrk(z;, z;),
which provides the covariance element between any twot(ary) sample locations;; andz; say. For a set
of locations,x = {1, 22, ..., x, } we hence may define tlmvariance matribas

k(z1,21) k(z1,22) -+ k(x1,25)
K (x.x) — k(mgz,xl) k(xgz, x9) /{?(1'2:, Tn) o
k(xp,z1) k(zp,x2) -+ k(zp,xn)

This means that the entire function evaluation, associatttdthe points inx, is a draw from a multi-variate
Gaussian (Normal) distribution,
p(y(x)) = N(u(x), K(x,x)) 2)

wherey = {y1,y2, ..., yn } are the dependent function values, evaluated at locatipns, x,, andu is amean
function again evaluated at the locations of theariables (that we will briefly revisit later). If we belietieere

is noise associated with the observed function valygshen we may fold this noise term into the covariance.
As we expect noise to be uncorrelated from sample to samparimata, so the noise term only adds to the
diagonal ofK, giving a modified covariance for noisy observations of therf

V(x,x) = K(x,x) + 01 (3)

wherel is the identity matrix and? is ahyperparameterepresenting the noise variance.
How do we evaluate the Gaussian Process posterior distribat some test datum,. say? We start with
considering the joint distribution of the observed datéconsisting ofx and associated valug9 augmented

by z, andy,..
p(L D)= (e | ey s ) "

wherek(x, z,) is the column vector formed frorh(z1, z), ..., k(zy, z.) andk(x,,x) is its transpose. We
find, after some manipulation, that the posterior distidoubvery, is Gaussian with mean and variance given
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by
M = p(ay) + k(z., x)K(x, %) "y — p(x)), (5)

02 = k(1) — k(z,, x) K(x,x) " Tk(x, 2,). (6)

We may readily extend this to infer the GP at a set of locatmutside our observations, &af say, to evaluate
the posterior distribution of (x..). The latter is readily obtained once more by extending tlfevalequations
and using standard results for multivariate Gaussians. M&roa posterior mean and variance given by

ply+) = N(m,,C,) (7

where,
m, = p(x,) + K(x, x)K(x,%) 7 (y(x) - p(x)) (8)
C, = K(x.,x,) — K(x,,x)K(x,x) 'K(x,,x)" . 9)

in which we use the shorthand notation for the covariabo@, b), defined as

k:(al,bl) k(al,bg) k(al,bn)
K(a,b) = k(ai’bl) k(a?:’bQ) k(@:’bn) (10)
F(an b)) k(amba) - k(anbn)

If we believe (and in most situations we do) that the obsedadd are corrupted by a noise process, we would
replaceK above with, for exampley from Equation 3 above.

What should the functional form of the kernel functié(x;, ;) be? To answer this we will start by
considering what the covariance elements indicate. Inioyle 2d example, the off-diagonal elements define
the correlation between the two variables. By consideririgna-series which we believe is locally smooth
we expect, agr; — x;| increases, the resultant covariance element to decreasegives rise to a variety of
well-known covariance functions, the most widely used ppshbeing thequared exponentiagiven by

2
k(xi,x]—) = h2 exp [— <L}\$3> ] (11)

In the above equation we see two mbrgerparametersnamelyh, A, which respectively govern the output
scale of our function and the input, or time, scale. The rbiaeference in Gaussian process models is to refine
vague distributions over many, very different curves, taemuecise distributions which are focused on curves
that explain our observed data. As the form of these curvasituely controlled by the hyperparameters so,
in practice, inference proceeds by refining distributiomsrahem. Ash controls the gain, or magnitude, of the
curves, we set this th = 1 to generate Figure 4 which shows curves drawn from a Gaupsiess (with
squared exponential covariance function) with varylng 0.1, 1, 10 (panels from left to right). The important
guestion ofhowwe infer the hyperparameters is left until later in this papesection 5. We note that to be a
valid covariance functiork(), implies only that the resultant covariance matrix, geteetasing the function, is
guaranteed to be positive (semi-) definite. As a simple e¥attme left panel of Figure 5 shows a small sample
of six observed data points, shown as dots, along with (ned) bars associated with each. The seventh datum,
with green error bars and '?’ beneath it, is unobserved. We@aussian Process with the squared exponential
covariance kernel (Equation 11 above). The right panel shbe GP posterior mean (black curve) along with
+20 (the posterior standard deviation). Although only a few s are observed, corresponding to the set of
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Figure 4: From left to right, functions drawn from a Gausgimocess with a squared exponential covariance
function with output-scalé = 1 and length scales = 0.1, 1, 10.

x,y of equations 8 and 9, we here evaluate the function on a finef g&tints, evaluating the corresponding
Y« posterior mean and variance using these equations and peowding interpolation between the noisy
observations (this explains the past) and extrapolationzfo> 0 which predicts the future. In this simple
example we have used a “simple” covariance function. As thm ef valid covariance functions is itself a
valid covariance function (more on this in section 3.3.edaso we may entertain more complex covariance
structures, corresponding to our prior belief regardirggdhta. Figure 6 shows Gaussian Process modelling of
observed (noisy) data for which we use slightly more comptariances. The left panel shows data modelled
using a sum of squared exponential covariances, one withsattwvards shorter characteristic timescales than
the other. We see how this combination elegantly allows uaddel a system with both long and short term
dynamics. The right panel uses a squared exponential kewitll bias towards longer timescale dynamics
along with a periodic component kernel (which we will dissirs more detail in section 3.3.1). Note here how
extrapolation outside the data indicates a strong posteelief regarding the continuance of periodicity.

3.2 Sequential modelling and active data selection

We start by considering a simple example, shown in Figurené.l&ft hand panel shows a set of data points and
the GP posterior distributioaxcludingobservation of the right-most datum. The right panel degicé same
inferenceincluding this last datum. We see how the posterior variance shrinkgeasiake the observation.
The previous example showed how making an observation, @&@moisy timeseries, shrinks our uncertainty
associated with beliefs about the function local to the nlag®mn. We can see this even more clearly if we
successively extrapolate until we see another datum, assind-igure 8. Rather than observations coming on
a fixed time-interval grid we can imagine a scenario in whibkayvations are costly to acquire, and we wish
to find a natural balance between sampling and reducing tamagrin the functions of interest. This concept
leads us naturally in two directions. Firstly for the actieguestingof observations when our uncertainty has
grown beyond acceptable limitand secondly to dropping previously observed samples franmwdel. The
computational cost of Gaussian Processes is dominatecebgvdrsion of a covariance matrix (as in Equation
9) and hence scales with the cube of the number of retainegleanT his leads to an adaptisample retention
Once more the balance is problem specific, in that it reliethertrade-off between computational speed and

20f course these limits are related to the cost of samplingafiservation and the manner in which uncertainty in the taries
can be balanced against this cost.
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Figure 5: (left panel) Given six noisy data points (errorshare indicated with vertical lines), we are interested
in estimating a seventh at. = 0.2. (right panel) The solid line indicates an estimatioryofor x, across the
range of the plot. Along with the posterior mean, the postarncertainty+2¢ is shaded.

(for example) forecasting uncertainty. The interestedee# pointed to [2] for more detailed discussions. We
provide some examples of active data selection in operaiiogal problem domains later in this paper.

3.3 Covariance and mean functions

The prior mean of a GP represents whatever we expect for aatifun before seeing any data. The covariance
function of a GP specifies the correlation between any pawutputs. This can then be used to generate
a covariance matrix over our set of observations and pettiet Fortunately, there exist a wide variety of
functions that can serve in this purpose [3, 4], which can theecombined and modified in a further multitude
of ways. This gives us a great deal of flexibility in our moutejl of functions, with covariance functions
available to model periodicity, delay, noise and long-telnifts for example.

3.3.1 Covariance functions

In the following section we briefly describe commonly usednkés. We start with simple white noise, then
consider commostationarycovariances, both uni- and multi-dimensional. We finisk ggction with periodic
and quasi-periodic kernel functions. The interested nemsdeferred to [1] for more details. Although this is
not an exclusive list by any means, it provides most of thedamce functions suitable for timeseries analysis.
We note once more that sums (and products) of valid covagi&amels give valid covariance functions (i.e.
the resultant covariance matrices are positive (semi-hiiefYiand so we may entertain with ease multiple
explanatory hypotheses. The price we pay lies in the extnaptaxity of handling the increased number of
hyperparameters.

White noise with variances? is represented by:
]{?WN(.%'Z', .%'j) = 0'21, (12)

wherel is the identity matrix. This kernel allows us to entertaircertainty in our observed data and is so
typically found added to other kernels (as we saw in Equajon
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Figure 6: (a) Estimation af, (solid line) andd-20 posterior deviance for a function with short-term and long-
term dynamics, and (b) long-term dynamics and a periodigomorant. Observations are shown as blue crosses.
As in the previous example, we finely evaluate the poster®it@show both interpolation and extrapolation.
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Figure 7: A simple example of a Gaussian process appliedesgiglly. The left panel shows the posterior

mean andt20 prior to observing the rightmost datum and the right paitdr observation.

The squared exponential (SE) kernel is given by:

ksg = h2 exp [— <%>1 (13)

whereh is an output-scale amplitude ands an input (length, or time) scale. This gives rather smaatia-
tions with a typical time-scale of and admits functions drawn from the GP that are infinitelfedéntiable.

The rational quadratic (RQ) kernel s given by:

N 22 (xi—xj)Q -
k?RQ(xwxj) =h" |1+ A2 (14)

wherea is known as the index. Rasmussen & Williams [1] show that iisquivalent to a scale mixture of
squared exponential kernels with different length scdesatter distributed according to a Beta distribution
with parametersy and\~2. This gives variations with a range of time-scales, theitistion peaking around

9
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Figure 8: The GP is run sequentially making forecasts untiea datum is observed. Once we make an
observation, the posterior uncertainty drops to zero aBsynoiseless observations).

A but extending to significantly longer period (but remainmagher smooth). When — oo, the RQ kernel
reduces to the SE kernel with length scale

Matérn The Matérn class of covariance functions are defined by

k(i 25) = hQW (2@@) B, (2@@) (15)
whereh is the output-scale) the input-scale'() is the standard Gamma function aBd) is the modified
Bessel function of second order. The additional hyperpatam controls the degree of differentiability of the
resultant functions modelled by a GP with a Matérn covaedinction, such that they are orfly-+1/2) times
differentiable. As — co so the functions become infinitely differentiable and thetévia kernel becomes the
squared exponential one. Taking= 1/2 gives the exponential kernel,

k(wi, ;) = h? exp (@) (16)

which results in functions which are only once differentgakand correspond to the Ornstein-Ulenbeck pro-
cess, the continuous time equivalent of a first order autessiye model, AR(1). Indeed, as discussed in [1],
timeseries models corresponding to AR(p) processes areethstime equivalents of Gaussian process models
with Matérn covariance functions with=p — 1/2.

Multiple inputs and outputs The simple distance metri¢r; — x|, used thus far clearly only allows for
the simplest case of a one dimensional inputvhich we have hitherto tacitly assumed to represent a time
measure. In general, however, we assume our input spacenhiasifiension and write(©) for the value of
theeth element inx and denotecge) as the value of theth element at théth index point. In such scenarios we
entertain multiple exogenous variables. Fortunatelys itat difficult to extend covariance functions to allow
for these multiple input dimensions. Perhaps the simplgstaach is to take a covariance function that is the
product of one-dimensional covariances over each inpatfthduct correlationrule [5]),

k(zi, z;) er) (e) mje) 17)

wherek(® is a valid covariance function over th#h input. As the product of covariances is a covariance,
so Equation (17) defines a valid covariance over the muttieisional input space. We can also introduce

10



distance functions appropriate for multiple inputs, suslthe Mahalanobis distance:

™ (x5 8) = /(% — %)) TS (x, - x), (18)

whereX is a covariance matrix over the input variable vestoNote that this is Aiyperparameteof the model,
and should not be confused with covariances formed fromr@wee functions (which are always denoted by
K in this paper). If¥ is a diagonal matrix, its role in Equation 18 is simply to gdevan individual input
scale\® = /3 (e, e) for the eth dimension. However, by introducing off-diagonal eletsemwe can allow for
correlations amongst the input dimensions. To form theirdiftensional kernel, we simply replace the scaled
distance measure; — z;|/ of, e.g. Equation 13 witd™) (x;,x») from Equation 18 above.

For multi-dimensional outputs, we consider a multi-dimenal space of timeseries with a lalielhich
indexes the timeseries, and time denoted:biyence forming the 2d input domain [@fz]. We will then exploit
the fact that a product of covariance functions is a covagdnnction in its own right, and write

k([lmwri]v [lnij]) = kﬂ&(xi?xj) kl(lnwln) s

taking covariance function terms over both time and timesedabel. If the number of timeseries is not too

large, we can arbitrarily represent the covariance matrét the labels using the spherical decomposition [6].
This allows us to arbitrarily represent any possible cararé over labels. More details of this approach, which
enables the dependencies between timeseries to be modkefiand in [7] and we use this as the focus of one
of our examples in Section 4 later in this paper.

Periodic and quasi-periodic kernels Note that a valid covariance function under any arbitranygsth) map
remains a valid covariance function [8, 1]. For any functionxz — u(x), a covariance functiok() defined
the range of: gives rise to a valid covariandé() over the domain of.. Hence we can use simple, stationary
covariances in order to construct more complex (possibty-stationary) covariances. A particularly relevant
example of this,

u(z) = (u(a) (QU)?u(b) (z)) = (005(277%)7Sin(2”%)> ) (19)

allows us to modify our simple covariance functions abovetalel periodic functions. We can now take this
covariance over: as a valid covariance ovet. As a result, we have the covariance function, for the exampl
of the squared exponential (13),

kper-se(xj, x5 h,w,T) = h? exp (—ﬁ sin? <W‘%D) . (20)

In this case the output scateserves as the amplitude afids the period. The hyperparameteris a “rough-
ness” parameter that serves a similar role to the input sScaldestationary covariances. With this formulation,
we can perform inference about functions of arbitrary rowggds and with arbitrary period. Indeed a periodic
covariance functwion can be constructed from any kernelwing the squared distanc¢e; —:cj)2 by replacing
the latter withsin?[r(x; — x;)/T], whereT is the period. The length scale is now relative to the period,
and lettingw — oo gives sinusoidal variations, whilst increasingly smallues ofw give periodic variations
with increasingly complex harmonic content. Similar pditofunctions could be constructed from any ker-
nel. Other periodic functions could also be used, so londheg give rise to a symmetric, positive definite
covariance matrix sin? is merely the simplest.

As described in [1], valid covariance functions can be aoeséd by adding or multiplying simpler covari-
ance functions. Thus, we can obtaigasi-periodickernel simply by multiplying a periodic kernel with one
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Figure 9: Random draws from Gaussian processes with ditféernels. From left to right, the top row shows
the squared exponential kernel, (Equation 13, wite 1, A = 1), the rational quadratic (Equation 14, with
h =1, A =1anda = 0.5), and a periodic kernel based on the squared exponentiab{ieg 20, withh = 1,

T = 2 andw = 0.5). The bottom row left panel shows a quasi-periodic kernakstmicted by multiplying the
periodic kernel of Equation 13 (with = 1, T' = 2, w = 1) with the rational quadratic kernel of Equation 14
(with A = 4 anda = 0.5). The middle and right panel in the bottom row show noisy s of this kernel
obtained by adding, respectively, a white noise term (Equoal3, withoc = 0.2) and a squared exponential
term (Equation 13, witth = 0.1, A = 0.1). Each line consists of equally spaced samples over thevatte
[—5, 5], and is offset from the previous one by 3 for clarity. The @mdhumber generated was initiated with
the same seed before generating the samples shown in eaath pan

of the basic stationary kernels described above. The lditégr specifies the rate of evolution of the periodic
signal. For example, we can multiply equation 20 with a seda@xponential kernel:

sin?[r(z; — x;)/T x; — x4)2
kQP,SE(-’Ei,-’Ej) _ h2 exp <_ [ ( 5 J)/ ] _ ( )\2 .]) >

2w (21)
to model a quasi-periodic signal with a single evolutionéme-scale\.

Examples of functions drawn from these kernels are showrigaré 9. There are many more types of
covariance functions in use, including some (such as thé@fdiamily above) which are better suited to model
rougher, less smooth variations. However, the SE and RQlsatready offer a great degree of freedom with
relatively few hyper-parameters, and covariance funstimaised on these are often sufficient to model the data
of interest.

Changepoints We now describe how to construct appropriate covariancetifums for functions that experi-
ence sudden changes in their characteristics. This sdstimeant to be expository; the covariance functions
we describe are intended as examples rather than an exfealisttiof possibilities. To ease exposition, we
assume the (single) input variable of interess entirely temporal. If additional features are availaltkey
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may be readily incorporated into the derived covariancgs [1

A drastic change in covariance: Suppose a function of istégsewell-behaved except for a drastic change at
the pointz,., which separates the function into two regions with assedi@ovariance functions (-, -; ;)
beforex. andks(-, -; 02) after, whered; andf, represent the values of any hyperparameters associated;wit
and ks, respectively. If the change is so drastic that the obsienatbeforer. are completely uninformative
about the observations after the changepoint. The new deyprparameters for this covariance function
contain knowledge about the original hyperparametersettvariance functions as well as the location of the
changepoint. This covariance function is easily seen tehs-positive definite and hence admissible [9, 10].

A smooth drastic change in covariance: Supposeortinuous functiorof interest is best modelled by
different covariance functions, before and after a chaoip¢p:.. The function values after the changepoint
are conditionally independent of the function values b&fgjiven the value at the changepoint itself. This
represents an extension to the drastic covariance dedaltmm/e; our two regions can be drastically different,
but we can still enforce smoothness across the boundaryebatthem. We call this covariance function
the continuous conditionally independecbvariance function. This covariance function can be elédnto
multiple changepoints, boundaries in multi-dimensionmces, and also to cases where function derivatives
are continuous at the changepoint. For proofs and detailisi®tovariance function the reader is invited to
see [11, 12].

A sudden change in input scale: Suppose a function of intdsesvell-behaved except for a drastic
change in the input scaleat timez.., which separates the function into two regions with différdegrees of
long-term dependence.

Let A\ and \; represent the input scale of the function before and aftectiangepoint at., respectively.
Suppose we wish to model the function with an isotropic davexe functiork(), for example of SE form, that
would be appropriate except for the change in input scale. &% model the function using the covariance
functionkp defined by

k(xi, 5 {h, A1}) (i, zj < Tc)
k:D(xia'Ij;{hza)\h)‘ZaIC}) = k($2,$],{h, )\2}) (IEZ,IE] 2 IEC) : (22)
h2k (‘x“;m + |$“;2xj‘> (otherwisg

1

in which () represents, for example, the exponentiation of the squafeeargument; hence forming a full
covariance function.

A sudden change in output scale: Suppose a function of sitesewell-behaved except for a drastic
change in the output scaleat timez., which separates the function into two regions.

Let y(z) represent the function of interest and dgtand h, represent the output scale gfr) before and
after the changepoint at., respectively. Suppose we wish to model the function witlsatropic covariance
function k() that would be appropriate except for the change in outpuésda derive the appropriate covari-
ance function, we modei(x) as the product of a function with unit output scajéy), and a piecewise-constant
scaling functiona(z), defined by

h c
a(z;x.) = {hl v i e (23)
2 T ZZe

Given the modely(z) = a(z)g(x), the appropriate covariance function fpis immediate. We may use the
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covariance functiork () defined by

k:E(xia x]a {h%a h%a g, :UC}) =

k(w255 {h1, A}) (w3, ) < )
a(wi;ze)a(we; we)k(wi i {1,A}) = k(wi, 25;{ha, A}) (wi, ) > @) - (24)
k(xi, x5 {(hh2)2,A\})  (otherwis@

The form ofk () follows from the properties of covariance functions, sdddf more details.

A change in observation likelihood: Hitherto, we have takée observation likelihood as being de-
fined by a single GP. We now consider other possible observatiodels, motivated by fault detection and
removal [11, 12]. A sensor fault essentially implies tha tielationship between the underlying, or plant,
processy(x) and the observed valuasis temporarily complicated. In situations where a modelhef fault

is known, the faulty observations need not be discarded; iy still contain valuable information about
the plant process. We distinguisault remova) for which the faulty observations are discarded, frizmilt
recovery for which the faulty data is utilised with reference to a rabaf the fault.

Perhaps the simplest fault mode is thabiafs in which the readings are simply offset from the true values
by some constant amount (and then, potentially, furtheupbted by additive Gaussian noise). Clearly knowing
the fault model in this case will allow us to extract inforoat from the faulty readings; here we are able to
perform fault recovery [11, 12]. In this scenario the valfithe offset and the start and finish times for the fault
are additional hyperparameters to be included in the model.

Another simple fault model is that ofstuck valuein which our faulty readings return a constant (stuck)
value regardless of the actual underlying true process. alisider the slightly more general model in which
those faulty observations may also include a Gaussian moisgonent on top of the constant value. Here,
of course, we can hope only for fault removal; the faulty negsl are not at all pertinent to inference about
the underlying variables of interest. This model has anaghytperparameter, an indicator variable, which is
unity if at time z; we are within the faulty region, and is equal to zero otheswldere, as for the biased case,
we also have additional hyperparameters correspondirftetettick value and the start and finish times of the
fault. Inference proceeds over the entire hyperparametewsth the probability distribution over the indicator
variable being of particular interest, as it encodes outepms belief at each:; that we are observing faulty
data.

The final fault we consider is that afrift. Here our sensor readings undergo a smooth excursion from
the plant process; that is, they gradually ‘drift’ away frdine real values, before eventually returning back to
normality. Unsurprisingly, the covariance kernel has aditazhal drift term. The model requires additional
parameters that define the drift rate in the covariance ifomcas well as the fault start and finish times. With
knowledge of this model, fault recovery is certainly poksilas shown in [11, 12].

Figure 10 shows some examples of the (non-fault) changepoirariance functions (upper row), along
with draws from the resultant GP (lower row). Each changapmvariance function is drawn as a bold red line,
with the standard squared exponential kernel showsyggor comparison. For comparison we fix the location
hyperparameter of all the functions:to= 500 and plot the functions over the interval frot0 < z < 560.

3.3.2 Mean functions

As the mean function will dominate our forecasts in regicmsffom the data, the choice of the prior mean
function can have a profound impact on our predictions anstie chosen with this in mind. In the majority
of cases in the literature we find vague (i.e. high unceniitdit mean functions used. This choice is reinforced
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Figure 10: Example covariance functions (upper row) forrttalelling of data with changepoints and associ-
ated draws (lower row) from the resultant GPs, indicatingtiind of data that they might be appropriate for.

Each changepoint covariance function is drawn as a boldmegwith the standard squared exponential kernel
shown asg:g g for comparison.

by considering the prior mean function as the expectatioctfan, prior to any observed data, of our domain
beliefs. In the vast majority of situations the symmetry af iggnorance (i.e. we are equally unsure that
a trend is up or down) leads to flat, often zero-offset, meactfans. As a simple example, we may have
domain knowledge that our functions have a linear drift tdoat we do not know the magnitude or direction.
Whatever prior we place over the gradient of the drift willrexessarily symmetric and leads to a zero-mean
with variance defined by the vagueness of our priors. If weal@such domain knowledge then we are free to
incorporate this into our Gaussian Process models. For@eaonsider the case in which we know that the
observed timeseries consists of a deterministic compaehe n unknown additive component. Draws from
our Gaussian Process are hence:

y(x) ~ N (m(x;0)),K(x,%x;0¢)) (25)

in which the mean functionm, has hyperparameteé,, that encode domain knowledge regarding the deter-
ministic component and the covariance makbhas hyperparameteég:. For example, we may know that our
observations are obtained from an underlying exponengieay with an unknown additive function along with
coloured noise. Our mean function will hence be of the fautr,) = Aexp(—az,) whereA, a are unknown
hyperparameters. Figure 11 (left panel) shows a standarared) exponential covariance GP used to for a
model for a small set of noisy data samples (red dots) draam & function with an underlying exponential
decay. The GP models the observed data well but long-terdighiens are naturally dominated by a flat prior
mean function. In the right panel a GP with identical cowaciis employed, but the mean function is that of
an exponential decay with unknown hyperparameters. Evewaéta points are sufficient for the probability
distribution over the exponential hyperparameters to fariied reasonably well leading to long-term forecasts
that are dominated by a (albeit uncertain) decay function.
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Figure 11: The effect of including a simple mean functioneTéft panel shows a GP model with a flat prior
mean and SE covariance function. The noisy observationindieated by (red) dots. The posterior from
the GP is shown along with20. In the right panel the same covariance function is usednbwtthe mean
function has extra hyperparameters corresponding to aonexpial decay with unknown time-constant and
scale. We see that the long-term forecasts in this exampladerour prior belief in the decay function.

4 Examples

In the following examples we briefly illustrate the Gausdfrncess approach to practical timeseries analysis,
highlighting the use of a variety of covariance and meantfans.

4.1 Multi-dimensional weather sensor data

The first example we provide is based on real-time data wisicloliected by a set of weather, sea state and
environment sensors on the south coast of the UK (see [7]doe ahetails). The network (Bramblemet) consists
of four sensors (named Bramblemet, Sotonmet, CambermeChimdet), each of which measures a range of
environmental variables (including wind speed and dicegtair temperature, sea temperature, and tide height)
and makes up-to-date sensor measurements. We have twdrdatasfor each variable at our disposal. The
firstis the real-time, but sporadic, measurements of the@mwental variables; it is these that are presented as
a multi-dimensional timeseries to the GP. Secondly we haeess, retrospectively, to finer-grained data. We
use this latter dataset for assessment only.

Figure 12 illustrates the efficacy our GP prediction for @ tigkight dataset. In order to manage the four
outputs of our tide function (one for each sensor), we revgit that we have a single output and ingutime,
andl, a sensor label, as discussed in Section 3.1 and the sulrsabbve.

Note that our covariance over time is the sum of a periodim tend adisturbanceterm. Both are of the
Matérn form withy = % This form is a consequence of our expectation that the tisdesd be well modelled
by the superposition of a simple periodic signal and an écnakdisturbance signal due to exceptional condi-
tions. Of course, for a better fit over the course of, say, & yeaould be possible to additionally incorporate
longer-term drifts and periods.

The periodT” of the periodic covariance term was unsurprisingly leasibeing about half a day, whereas
for the disturbance term the time scalevas found to be about two and a half hours. Note that this legtilt
is concordant with our expectations for the time scales @fthather events we intend our disturbance term to
model.

Our algorithm learned that all four sensors were very stongrrelated, with spherical decomposition of
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Figure 12: Prediction and regression of tide height data(d@rndependent and (b) multi-output Gaussian
processes.

the inferred correlation elements all very close to one. Aymerparameter matriX of Equation 18 addition-
ally gives an appropriate length scale for each sensor. thigdata set, the Chimet sensor was found to have
a length scale of .4m, with the remainder possessing scales of clogertoFrom the inference we determined
weather events to have induced changes in tide height orrdiee of20%.

We also make allowances for the prospect of relative latemegngst the sensors by incorporating delay
variables, introduced by a vector of delays in time obs@wmat[7]. We found that the tide signals at the
Cambermet and Chimet stations were delayed by ab@uninutes relative to the other two. This makes
physical sense — the Bramblemet and Sotonmet stations@tetbto the west of the Cambermet and Chimet
stations, and the timing of high tide increases from wesagi within the English channel.

Note the performance of our multi-output GP formalism whenBramblemet sensor drops out at 1.45
days. In this case, the independent GP quite reasonablyctzrdbat the tide will repeat the same periodic
signal it has observed in the past. However, the GP can achietter results if it is allowed to benefit from
the knowledge of the other sensors’ readings during thisrnvat of missing data. Thus, in the case of the
multi-output GP, byt = 1.45 days, the GP has successfully determined that the sensogdl &ery strongly
correlated. Hence, when it sees an unexpected low tide ilCtimet sensor data (caused in this case by
the strong northerly wind), these correlations lead it ferira similarly low tide in the Bramblemet reading.
Hence, the multi-output GP produces significantly more eateupredictions during the missing data interval,
with associated smaller error bars. Exactly the same effesten in the later predictions of the Chimet tide
height, where the multi-output GP predictions use obsiematfrom the other sensors to better predict the high
tide height at = 2.45 days.

Note also that there are two brief intervals of missing dataafl sensors just after both of the first two
peak tides. During the second interval, the GP’s predistimn the tide are notably better than for the first —
the greater quantity of data it has observed allows it to ycedmore accurate predictions. With time, the GP
is able to build successively better models for the series.

17



Table 1: Predictive performances for five-day Bramblenag tieight dataset. We note the superior perfor-
mance of the GP compared to a more standard Kalman filter model

Algorithm RMSE (m) NMSE (dB)
Naive 7.5x107! 2.1
Kalman filter 1.7x1071 -15.2
Independent GPs 8102 -20.3
Multi-output GP 3.8x1072 -27.6

The predictive performances for our various algorithmsr ¢éhis dataset can be found in Table 1. For the
Kalman filter comparison, a history length of 16 observatioras used to generate each prediction, since this
gave rise to the best predictive ability. However, note that multi-output GP which exploits correlations
between the sensors, and the periodicity in each individeators’ measurements, significantly outperforms
both the Kalman filter and the independent GP [7]. The naselt is obtained by repeating the last observed
sensor value as a forecast.

4.2 Active Data Selection

We now demonstrate our active data selection algorithm.ndJtie fine-grained data (downloaded directly
from the Bramblemet weather sensors), we can simulate howsBuvould have chosen its observations had
it been in control. Results from the active selection of obestions from all the four tide sensors are displayed
in Figure 13. Again, these plots depict dynamic choicesina t, the GP must decide when next to observe,
and from which sensor, given knowledge only of the obsemwatiecorded prior tg in an attempt to maintain
the uncertainty in tide height below 10cm. The covariangetion used was that described in the previous
example, namely a sum of two= 5/2 Matérn covariance functions, one stationary and the athperiodic
form. Consider first the case shown in Figure 13(a), in whigghasate independent GPs are used to represent
each sensor. Note that a large number of observations ane iaikially as the dynamics of the sensor readings
are learnt, followed by a low but constant rate of observatin contrast, for the multi-output case shown
in Figure 13(b), the GP is allowed to explicitly representretations and delays between the sensors. As
mentioned above, this data set is notable for the slightydefighe tide heights at the Chimet and Cambermet
sensors relative to the Sotonmet and Bramblemet sensasodhe nature of tidal flows in the area. Note
that after an initial learning phase as the dynamics, caticels, and delays are inferred, the GP chooses to
sample predominantly from the undelayed Sotonmet and Beandi sensofs Despite no observations of the
Chimet sensor being made within the time span plotted, thdtieg predictions remain remarkably accurate.
Consequently only19 observations are required to keep the uncertainty belowpbeified tolerance, whereas
358 observations were required in the independent case. Thiegents another clear demonstration of how
our prediction is able to benefit from the readings of mudtipénsors.

4.3 Changepoint Detection

In [9, 10] a fully Bayesian framework was introduced for penfiing sequential time-series prediction in the
presence of changepoints. The position of a particular gdamint becomes a hyperparameter of the model

3The dynamics of the tide height at the Sotonmet sensor are ommplex than the other sensors due to the existence of agyou
flood stand’ and a ‘double high tide’ in Southampton. For tieigson, the GP selects Sotonmet as the most informativersand
samples it most often.
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Figure 13: Comparison of active sampling of tide data usajgirfdependent and (b) multi-output Gaussian
processes. Note that, in the case of multi-output GPs, amoseeading (Sotonmet) slightly leads the other
readings and is hence sampled much more frequently. In sasescsuch as the Cambermet readings, only
occasional samples are taken yet the GP forecasts areesxcell

which is obtained using Bayesian inference. If the locatiohchangepoints in the data are of interest, the full
posterior distribution of these hyperparameters can bamdd given the data. The result is a robust time-series
prediction algorithm that makes well-informed predic8aven in the presence of sudden changes in the data.
If desired, the algorithm additionally performs changepa@ind fault detection as a natural byproduct of the

prediction process. In this section we briefly present soxamelar data sets and the associated changepoint
inference.

4.3.1 Nile data set

We first consider a canonical changepoint dataset, the ramimater levels of the Nile river during the period
AD 622-1284 [13]. Several authors have found evidence stipgoa change in input scale for this data
around the year AD 722 [14]. The conjectured reason for thésmgepoint is the construction in AD 715 of a
new device (a “nilometer”) on the island of Roda, which atifecthe nature and accuracy of the measurements.
We performed one-step lookahead prediction on this datesset) the input-scale changepoint covariance
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Kp (22). The results can be seen in Figure 14. The upper plotsbawone-step predictions on the dataset,
including the mean angto error bars. The lower plot shows the posterior distributtbthe number of years
since the last changepoint. A changepoint around AD 7204§22early visible and agrees with previous
results [14].
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Figure 14: Prediction for the Nile dataset using input-sadiangepoint covariance (left panel) and the corre-
sponding posterior distribution for time since changep(ight panel).

4.3.2 1972-1975 Dow-Jones industrial average

As a second canonical changepoint dataset we present tee sedaily returns of the Dow-Jones industrial
average between the 3rd of July, 1972 and the 30th of Jun& [%]. This period included a number of
newsworthy events that had significant macroeconomic infleigas reflected in the Dow-Jones returns.

We performed sequential one-step prediction on this ddtay s GP with a diagonal covariance that as-
sumed all measurements were |ID (as under the efficient mhgmthesis, returns should be uncorrelated).
However, the variance of these observations was assumawlezgo changes, and as such we used a covari-
ance that incorporated such changes in output scale. Assediad three hyperparameters to marginalise: the
variance before the changepoint, the variance after theggpmint and, finally, the location of that changepoint.

Our results are plotted in Figure 15. Our model clearly idiexst the important changepoints that likely
correspond to the commencement of the OPEC embargo on thefl@ictober, 1973, and the resignation of
Richard Nixon as President of the U.S.A. on the 9th of AugL@74. A weaker changepoint is identified early
in 1973, which [15] speculate is due to the beginning of theeVgmte scandal.

4.4 Quasi-periodic modelling of stellar light curves

Many Sun-like stars display quasi-periodic brightnessati@mns on time-scales of days to weeks, with ampli-
tudes ranging from a few parts per million to a few percentesgnvariations are caused by the evolution and
rotational modulation of magnetically active regions, evhare typically fainter than the surrounding photo-
sphere. In this case, we may expect a range of both periodarience scales and evolutionary time-scales
A, corresponding to different active region sizes and lifiees respectively. This can be achieved by replacing
one or both of the squared exponential (SE) kernels in emuaB by rational quadratic (RQ) kernels (equation
14). Finally, we can also allow for short-term irregularighility or correlated observational noise by includ-
ing a separate, additive SE or RQ kernel. For example, [1&] asGaussian Process with such quasi-periodic
kernels to model the total irradiance variations of the Suorder to predict its radial velocity variations.

In Figure 16, we show the results of a quasi-periodic Gand3racess regression to photometric observa-
tions of the well-known planet-host star HD 189733, takemf{17]. The kernel used consists of a periodic
SE component (equation 21) multiplied by a RQ term (equatito allow for a range of evolutionary time-
scales, plus an additive white noise term (equation 12grémfce over the hyperparameters of interest yielded
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Figure 15: Online (sequential) one-step predictions (tapeh and posterior for the location of changepoint
for the Dow-Jones industrial average data using an outm@leshangepoint covariance (lower panel).

expected values df = 6.68 mmag,T = 11.86 days,w = 0.91, « = 0.23, A = 17.81 days andr = 2.1
mmag, wherers is the amplitude of the white noise term. Our period is in #goe agreement with [17]. The
relatively long periodic length-scake indicates that the variations are dominated by a small nammibiirly
large active regions. The evolutionary term has a relatigbbrt time-scale), but a shallow indexy, which

is consistent with the notion that the active regions onglas evolve relatively fast and/or that, as in the Sun,
active regions located at different latitudes have differetation rates (known as differential rotation).
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Figure 16: Predictive distribution for a quasi-periodicUSsian process process model using a mixed SE
and RQ kernel, trained and conditioned on observations maithethe 0.8m APT telescope [17] using the
Stromgrenb andy filters. The black dots represent the observations, theimedd the mean of the predictive
posterior distribution and the shaded region encompahkseisdt interval.

21



4.5 Modelling light curves of transiting exoplanets

One of the most successful ways of discovering and charsicigrextra-solar planets (i.e. planets not in our
solar system) is through observing transit light curves. rasit occurs when a planet periodically passes
between its host star and the Earth blocking a portion of thkas light, and produces a characteristic dip in
the light curve. From this transit we can measure such phlyp@rameters as the planet-to-star radius ratio
and the inclination of the orbit. Whilst transit light cussare readily described by a deterministic parametric
function, real observations are corrupted by systematigenio the detector, external state variables (such as
the temperature of the detector, orbital phase, positiahehost star on the CCD array etc), as well as the
underlying flux variability of the host star. As it is not pdse to produce a deterministic model to account for
all these systematics, a Gaussian Process may be used ecapdistribution over possible artefact functions,
modelling correlated noise as well as subtle changes innebddight curves due to external state variables.
We hence encode the transit curve as the mean function of dl@Pcovariance function has inputs given
by time and external state variables (hence this is a rmyitii, single output model. By integrating out our
uncertainty (see Section 5) in the hyperparameters of théwbizh model all the systematic artefacts and
noise processes), we can gain much more realistic inferehpebability distribution of the transit function
parameters (the hyperparameters of the mean functionh &etailed discussion of the application of Gaussian
Processes to transit light curves see [18], in which theunstntal systematics are represented by a GP with a
squared exponential kernel (Equation 13) and input paensiedpresenting the external state variables. Robust
inference of transit parameters is required to performildetatudies of transiting systems, including the search
for atomic and molecular signatures in the atmospheresagflarets. Figure 17 shows this GP model fitting
to the timeseries of observations. More details are fourj@idh
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Figure 17: As an example of a complex mean function, we herdelngata from an exoplanet transit light
curve. The data is fitted with a GP with an exoplanet trans@amfanction and a squared exponential covariance
kernel to model the correlated noise process and the efféetgernal state variables. The shaded regions are
at+1, 20 from the posterior mean.
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Figure 18: Samples (black dots) obtained by optimising digelikelihood (grey) using a global optimiser, and
in blue, the maximum likelihood approximation of the likedod surface.

5 Marginalising Hyperparameters

As Gaussian Process models have a number of hyperparaniatéing covariance function (and the mean
function) that we musmarginalisé over in order to perform inference. That is, the quantity weiaterested

inis
' p(y.ly, 0) p(ylo) p(6)do
PUsY) = T 16) p(0)a0

which requires two integrals to be evaluated. These aretipitally non-analytic, due to the complex form of
the likelihoodp(y|#) when considered as a function of hyperparametess such, we are forced to resort to
approximate techniques.

Approximating an integral requires two problems to be swlverst, we need to make observations of the
integrand, to explore it, and then those observations neée used to construct an estimate for the integral.
There are a number of approaches to both problems.

Optimising an integrand (see Figure 18) is one fairly effectneans of exploring it: we will take samples
around the maxima of the integrand, which are likely to descthe majority of the mass comprising the
integral. A local optimiser, such as a gradient ascent dlgor will sample the integrand around the peak
local to the start point, giving us information pertinentatideast that part of the integrand. If we use a global
optimiser, our attempts to find the global extremum willmltitely result in all the integrand being explored, as
desired.

Maximising an integrand is most common when performimaximum likelihood The integrands in (26)
are proportional to the likelihoog(y|0): if the prior p(0) is relatively flat, the likelihood will explain most of
the variation of the integrands as a functiondofMaximising the likelihood hence gives a reasonable means
of integrand exploration, as above. Maximum likelihoodwkwer, specifies a generally unreasonable means
of integral estimation: the likelihood is approximated d3iwac delta function located at titethat maximised
the likelihood. As per Figure 18, this completely ignores tidth of the integrands, leading to potentially
problematic features [19]. This approximation finds usemithe likelihood is very peaked, as is the case when
we have a great deal of data.

A slightly more sophisticated approach to integral estiomais to take d.aplace approximatiorwhich fits
a Gaussian around the maximum likelihood peak. This givésaat some representation of the width of the
integrands. Yet further sophistication is displayed by riethods ofVariational Bayeq20], which treat the
fitting of probability distributions to the problematic tes in our integrands as an optimisation problem.

(26)

“The process of marginalisation refers to “integrating auttertainty. For example, gives(y,9) = p(y|0)p(6) we may obtain
p(y) by marginalising over the unknown paramefgsuch thap(y) = [ p(y|0)p(6)d6.
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Figure 19: Samples obtained by taking draws from the pastaging an MCMC method.
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Figure 20: A set of samples that would lead to unsatisfadbetyaviour from simple Monte Carlo.

Monte Carlo techniques represent a very popular means d¢bringp an integrand.Simple Monte Carlo
draws random samples from the prija(®), to which our integrands are proportional. Note that (26) ba
rewritten as

P(ysly) = / p(ysly. 0) p(6ly) db 27)

More sophisticatedlarkov Chain Monte Carldechniques [21] attempt to generate samples from the hgperp

rameter posterior

p(y|0) p(9)

pOly) = o
) = Totl6) pio)a

to which (27) is proportional (Figure 19 illustrates sanspdegawn using such a method). Sampling in this way
ensures that we have many samples where the prior/posigriarge, and hence, where our integrands are
likely to be large. This is a particular concern for multidinsional integrals, where the problem is complicated
by the ‘curse of dimensionality’ [22]. Essentially, the unie of space that could potentially be explored is
exponential in its dimension. However, a probability dizition, which must always have a total probability
mass of one, will be highly concentrated in this space; eéngwur samples are likewise concentrated is a
great boon. Moreover, Monte Carlo sampling ensures a nom{a®bability of obtaining samples from any
region where the prior is non-zero. This means that we caieeElsome measure of broader exploration of
our integrands.

Monte Carlo, does not, however, provide a very satisfaatoeans of integral estimation: it simply approx-
imates the integral as the average over the obtained sandydeliscussed by [23], this ignores the information
content contained in the locations of the samples, leadingnsatisfactory behaviour. For example, imagine
that we had three samples, two of which were identi@al= 6. In this case, the identical value will receive
2/3 of the weight, whereas the equally useful other value wilerge onlyl/s. This is illustrated in Figure 20.

(28)
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Figure 21: Bayesian quadrature fits a GP to the integrandthemdby performs inference about the integral.

In attempt to address these issues, Bayesian quadratyr@gpgrovides a model-based means of integral
estimation. This approach assumes Gaussian processetheviategrands, using the obtained samples to
determine a distribution for the integrals (see Figure Ab)is probabilistic approach means that we can use
the obtained variance in the integral as a measure of ourd=orde in its estimate.

6 Conclusion

In this paper we have presented a brief outline of the conegjpind mathematical basis of Gaussian Process
modelling of timeseries. As ever, a practical implementatf the ideas concerned requires jumping algorith-
mic rather than theoretical hurdles which we do not haveepacliscuss here. Some introductory code may
be found aftp://ftp.robots.ox.ac.uk/pub/outgoing/mebden/n@$ttut.zipand more general code can be down-
loaded fromhttp://www.gaussianprocess.org/gpripace has not permitted discussion of exciting recendsren
in Gaussian Process modelling which allow for more expiigbrporation of differential equations governing
the system dynamics (either observed or not), suchaésnt Force Model$26]. Further extensions, using
Gaussian Processes as building blocks in more complex Ipitsiia models are of course possible and recent
research has also highlighted the use of GPs for numeritgriation, global optimisation, mixture-of-experts
models, unsupervised learning models and much more.
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