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Abstract

In this paper we offer a gentle introduction to Gaussian Processes for timeseries data analysis. The
conceptual framework of Bayesian modelling for timeseriesdata is discussed and the conceptual framework
of Bayesian non-parametric modelling presented forGaussian Processes. We discuss how domain
knowledge influences design of the Gaussian Process models and provide case examples to highlight the
approaches.
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1 Introduction

If we are to exploit the richness of scientific data availableto us we must consider a principled framework
under which we may reason and infer. To fail to do this is to ignore uncertainty and risk false analysis, decision
making and forecasting. What we regard as a prerequisite forintelligent data analysis is ultimately concerned
with the problem of computing in the presence of uncertainty. Considering data analysis under the mathematics
of modern probability theory allows us to exploit a profoundframework under which information, uncertainty
and risk for actions, events and outcomes may be uniquely defined. Much recent research hence focuses
on the principled handling of uncertainty for distributed modelling in complex environments which are highly
dynamic and can be communication poor, observation costly and time-sensitive. The machinery of probabilistic
inference brings to the field of timeseries analysis and monitoring robust, stable, computationally practical and
principled approaches which naturally accommodate these real-world challenges. As a framework for reasoning
in the presence of uncertain, incomplete and delayed information we appeal to Bayesian inference. This allows
us to perform robust modelling even in highly uncertain situations, and has a long pedigree in inference. Being
able to include measures of uncertainty allows, for example, us to actively select where and when we would
like to observe samples and offers approaches by which we mayreadily combine information from multiple
noisy sources.

This paper favours the conceptual over the mathematical1. We start in the next section with a short overview
of why Bayesianmodelling is important in timeseries analysis, culminating in arguments which provoke us to
use non-parametric models. Section 3 presents a conceptualoverview of a particular flavour of non-parametric

1Of course the mathematical details are important and elegant but would obscure the aims of this paper. The interested reader is
encouraged to read the original material, or a canonical text such as [1].
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model, the Gaussian Process, which we argue is well-suited to timeseries modelling. We discuss in more detail
the role ofcovariance functions, the influence they have on our models and explore, by example, how the (ap-
parently subjective) function choices we make are in fact motivated by domain knowledge. Section 4 presents
real-world timeseries examples, from sensor networks, changepoint data and astronomy, to highlight the prac-
tical application of Gaussian Process models. The more mathematical framework of inference is detailed in
section 5.

2 Bayesian time series analysis

We start by casting timeseries analysis into the format of aregressionproblem, of the formy(x) = f(x) + η,
in which f() is a (typically) unknown function andη is a (typically white) additive noise process. The goal
of inference in such problems is two-fold; firstly to evaluate the putative form off() and secondly to evaluate
the probability distribution ofy for somex∗, i.e. p(y|x∗). To enable us to perform this inference we assume
the existence of a dataset ofobservations, typically obtained as input-output pairs,D = (xi, yi) for example.
For the purposes of this paper we make the tacit assumption that the inputsxi (representing, for example, time
locations of samples) are known precisely, i.e. there is noinput noise, but that observation noise is present on
theyi. When we come to analyse timeseries data there are two approaches we might consider. The first, which
here we refer to asinstantaneous function mappingandcurve fitting.

Instantaneous function mapping approaches consider the inference of a functionf which maps somex
to the outcome variabley without explicit use of the (time) ordering of the data. This has the positive that
x andy need not be defined as functions of time. However, it becomes more difficult to incorporate typical
timeseries domain knowledge, such as belief of smoothness in y and the folding in of knowledge relating to
gaps in the data is more difficult. The function mapping approach is typical when a static functionf : x 7→ y is
to be inferred from retrospective data. The mapping function f may be static, i.e. we believe that although the
observed informationx changes, the manner in which it maps to outcomesy is fixed.

Curve fitting on the other hand makes the tacit assumption that x andy are both ordered in time. Hence
y is predicted based on observed past data. This has the benefitthat the outcome variable is treated as lying
close to a curve, which naturally takes into account the timing of observations. The relationship betweenx and
y is hence not fixed, but conditioned on observed data which typically lies close, in time, to the point we are
investigating In this paper we make the decision to concentrate on this approach, as we believe it offers a more
profound model for much of the timeseries data we are concerned with.

As a simple example to introduce the canonical concepts of Bayesian modelling we consider a small set of
data samples, locatedx = 0, 1, 2 and associated observed target values. Least-squares regression on this data
using simple model (based on polynomial splines) gives riseto the curve shown as the line in the left panel of
Figure 1. We see that, naturally, this curve fits our observeddata very well. What about the credibility of the
model in regions where we see no data, importantlyx > 2? If we look at a larger set of examples of curves
from the same model we obtain a family of curves which explainthe observed dataalmost identicallyyet differ
very significantly in regions where we have no observations,both interpolating between sample points, and in
extrapolation. This simple example leads naturally to us considering adistribution of curves. Working with
this distribution over curves, each of which offers an explanation for the observed data, is central to Bayesian
modelling. We note that curves that lie towards the edges of this distribution have higher average curvature
than those which lie close to the middle. There is an intimaterelationship between curvature, complexity
and Bayesian inference, leading naturally to posterior beliefs over models being a combination of how well
observed data is explained and how complex the explanatory functions are. This elegant formalism encodes in
a single mathematical framework such ideas asOccam’s razor, such that simple explanations of observed data
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are favoured [].
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Figure 1: A simple example of curve fitting. The left panel represents the least-squares fit of a simple spline
to the observed data (red dots). In the right panel shows example curves with almost identical fit to the data as
the least-squares spline. These curves have high similarity close to the data yet high variability in regions of no
observations, both interpolating and, importantly for time-series, as we extrapolate beyondx = 2.

2.1 Parametric and non-parametric models

The simple example from the previous section showed that there are many functions that can equally well ex-
plain data that we have observed. How should we choose from the bewildering array of mathematical functions
that give rise to such explanatory curves? If we have strong prior knowledge regarding a system, then this
(infinite) function space may be reduced to a single family; perhaps the family of quartic polynomials may be
the right choice. Such models are considered to beparametric, in the sense that a finite number of unknown
parameters (in our polynomial example, these are the coefficients of the model) need to be inferred as part of
the data modelling process. Although there is a very large literature (rightly so) on such parametric modelling
methods, there are many scenarios in which we have little, orno, prior knowledge regarding appropriate models
to use. We may, however, have seemingly less specific domain knowledge; for example, we may know that our
observations are visible examples from an underlying process which is smooth, continuous and variations in the
function take place over characteristic time-scales (not too slowly yet not so fast) and have typical amplitude.
Surprisingly we may work mathematically with the infinite space of all functions that have these characteris-
tics. Furthermore, we may even contemplate probability distributions over this function space, such that the
work of modelling, explaining and forecasting data is performed by refining these distributions, so focusing
on regions of the function space that are excellent contenders to model our data. These functions are not of a
simple pre-defined form, with sets of parameters to be inferred (unlike our simple polynomial example), this
approach is referred to as a branch ofnon-parametricmodelling. As the dominant machinery for working with
these models is that of probability theory, they are often referred to asBayesian non-parametric models. We
now focus on a particular member, namely theGaussian Process(GP).

3 Gaussian Processes

We start this introduction to Gaussian processes by considering a simple two-variable Gaussian distribution,
which is defined for variablesx1, x2 say, by a mean and a2 × 2 covariance matrix, which we may visualise
as a covariance ellipse corresponding to equal probabilitycontours of the joint distributionp(x1, x2). Figure 2
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shows an example 2d distribution as a series of (blue) elliptical contours. The correspondingmarginaldistri-
butions,p(x1) andp(x2) are shown as “projections” of this along thex1 andx2 axes (black). We now consider
the effect of observing one of the variables such that, for example, we observex1 at the location of the dashed
vertical line in the figure. The resultantconditional distribution, p(x2|x1 = known) indicated by the (black)
dash-dot curve, now deviates significantly from the marginal p(x2). Because of the relationship between the
variables implied by the covariance, knowledge of one shrinks our uncertainty in the other. To see the intimate

x
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x 2

Figure 2: The conceptual basis of Gaussian Processes startswith an appeal to simple multivariate Gaussian
distributions. A joint distribution (covariance ellipse)forms marginal distributionsp(x1), p(x2) which are
vague (black solid). Observingx1 at a value indicated by the vertical dashed line changes our beliefs aboutx2,
giving rise to a conditional distribution (black dash-dot). Knowledge of the covariance lets us shrink uncertainty
in one variable based on observation of the other.

link between this simple example and time-series analysis,we represent the same effect in a different format.
Figure 3 shows the mean (black line) and±σ (grey shaded region) forp(x1) andp(x2). The left panel depicts
our initial state of ignorance and the right panel after we observex1. Note how the observation changes the
location and uncertainty of the distribution overx2. Why stop at only two variables? We can extend this ex-
ample to arbitrarily large numbers of variables, the relationships between which are defined by an ever larger
covariance. In principle we can extend this procedure to thelimit in which the locations of thexi are infinitely
dense (here on the real line) and so the infinite joint distribution over them all is equivalent to a distribution over
a function space. In practice we won’t need to work with such infinite spaces, it is sufficient that we can choose
to evaluate the probability distribution over the functionatany location on the real lineand that we incorporate
any observations we may have at any other points. We note, crucially, that the locations of observations and
points we wish to investigate the function arenot constrainedto lie on any pre-defined sample points; hence we
are working in continuous time with a Gaussian Process. It isworth noting now, as we will see, that the proba-
bility distribution of a function drawn from a Gaussian process isnot necessarily Gaussian; the distribution of
a finite sample from the Gaussian Process is however, multivariate Gaussian.
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Figure 3: The change in distributions onx1 andx2 is here presented in a form more familiar to time-series
analysis. The left panel shows the initial, vague, distributions (the black line showing the mean and the grey
shading±σ) and the right panel subsequent to observingx1. The distribution overx2 has become less uncertain
and the most-likely “forecast” ofx2 has also shifted.

3.1 Covariance functions

As we have seen, the covariance forms the beating heart of Gaussian Process inference. How do we formulate
a covariance over arbitrarily large sets? The answer lies indefining acovariance kernel function, k(xi, xj),
which provides the covariance element between any two (arbitrary) sample locations,xi andxj say. For a set
of locations,x = {x1, x2, ..., xn} we hence may define thecovariance matrixas

K(x,x) =











k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

...
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)











(1)

This means that the entire function evaluation, associatedwith the points inx, is a draw from a multi-variate
Gaussian (Normal) distribution,

p(y(x)) = N (µ(x),K(x,x)) (2)

wherey = {y1, y2, ..., yn} are the dependent function values, evaluated at locationsx1, ..., xn andµ is amean
function, again evaluated at the locations of thex variables (that we will briefly revisit later). If we believethere
is noise associated with the observed function values,yi, then we may fold this noise term into the covariance.
As we expect noise to be uncorrelated from sample to sample inour data, so the noise term only adds to the
diagonal ofK, giving a modified covariance for noisy observations of the form

V(x,x) = K(x,x) + σ2I (3)

whereI is the identity matrix andσ2 is ahyperparameterrepresenting the noise variance.
How do we evaluate the Gaussian Process posterior distribution at some test datum,x∗ say? We start with

considering the joint distribution of the observed dataD (consisting ofx and associated valuesy) augmented
by x∗ andy∗..

p

([

y

y∗

])

= N
([

µ(x)
µ(x∗)

]

,

[

K(x,x) k(x, x∗)
k(x∗,x) k(x∗, x∗)

])

(4)

wherek(x, x∗) is the column vector formed fromk(x1, x∗), ..., k(xn, x∗) andk(x∗,x) is its transpose. We
find, after some manipulation, that the posterior distribution overy∗ is Gaussian with mean and variance given
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by
m∗ = µ(x∗) + k(x∗,x)K(x,x)−1(y − µ(x)), (5)

σ2
∗ = k(x∗, x∗)− k(x∗,x)K(x,x)−1k(x, x∗). (6)

We may readily extend this to infer the GP at a set of locationsoutside our observations, atx∗ say, to evaluate
the posterior distribution ofy(x∗). The latter is readily obtained once more by extending the above equations
and using standard results for multivariate Gaussians. We obtain a posterior mean and variance given by

p(y∗) = N (m∗,C∗) (7)

where,

m∗ = µ(x∗) +K(x∗,x)K(x,x)−1(y(x) − µ(x)) (8)

C∗ = K(x∗,x∗)−K(x∗,x)K(x,x)−1K(x∗,x)
T . (9)

in which we use the shorthand notation for the covariance,K(a,b), defined as

K(a,b) =











k(a1, b1) k(a1, b2) · · · k(a1, bn)
k(a2, b1) k(a2, b2) · · · k(a2, bn)

...
...

...
...

k(an, b1) k(an, b2) · · · k(anbn)











(10)

If we believe (and in most situations we do) that the observeddata are corrupted by a noise process, we would
replaceK above with, for example,V from Equation 3 above.

What should the functional form of the kernel functionk(xi, xj) be? To answer this we will start by
considering what the covariance elements indicate. In our simple 2d example, the off-diagonal elements define
the correlation between the two variables. By considering atime-series which we believe is locally smooth
we expect, as|xi − xj| increases, the resultant covariance element to decrease. This gives rise to a variety of
well-known covariance functions, the most widely used perhaps being thesquared exponential, given by

k(xi, xj) = h2 exp

[

−
(

xi − xj
λ

)2
]

(11)

In the above equation we see two morehyperparameters, namelyh, λ, which respectively govern the output
scale of our function and the input, or time, scale. The role of inference in Gaussian process models is to refine
vague distributions over many, very different curves, to more precise distributions which are focused on curves
that explain our observed data. As the form of these curves isuniquely controlled by the hyperparameters so,
in practice, inference proceeds by refining distributions over them. Ash controls the gain, or magnitude, of the
curves, we set this toh = 1 to generate Figure 4 which shows curves drawn from a Gaussianprocess (with
squared exponential covariance function) with varyingλ = 0.1, 1, 10 (panels from left to right). The important
question ofhowwe infer the hyperparameters is left until later in this paper, in section 5. We note that to be a
valid covariance function,k(), implies only that the resultant covariance matrix, generated using the function, is
guaranteed to be positive (semi-) definite. As a simple example, the left panel of Figure 5 shows a small sample
of six observed data points, shown as dots, along with (red) error bars associated with each. The seventh datum,
with green error bars and ’?’ beneath it, is unobserved. We fita Gaussian Process with the squared exponential
covariance kernel (Equation 11 above). The right panel shows the GP posterior mean (black curve) along with
±2σ (the posterior standard deviation). Although only a few samples are observed, corresponding to the set of
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Figure 4: From left to right, functions drawn from a Gaussianprocess with a squared exponential covariance
function with output-scaleh = 1 and length scalesλ = 0.1, 1, 10.

x,y of equations 8 and 9, we here evaluate the function on a fine setof points, evaluating the corresponding
y∗ posterior mean and variance using these equations and henceproviding interpolation between the noisy
observations (this explains the past) and extrapolation for x∗ > 0 which predicts the future. In this simple
example we have used a “simple” covariance function. As the sum of valid covariance functions is itself a
valid covariance function (more on this in section 3.3.1 later, so we may entertain more complex covariance
structures, corresponding to our prior belief regarding the data. Figure 6 shows Gaussian Process modelling of
observed (noisy) data for which we use slightly more complexcovariances. The left panel shows data modelled
using a sum of squared exponential covariances, one with a bias towards shorter characteristic timescales than
the other. We see how this combination elegantly allows us tomodel a system with both long and short term
dynamics. The right panel uses a squared exponential kernel, with bias towards longer timescale dynamics
along with a periodic component kernel (which we will discuss in more detail in section 3.3.1). Note here how
extrapolation outside the data indicates a strong posterior belief regarding the continuance of periodicity.

3.2 Sequential modelling and active data selection

We start by considering a simple example, shown in Figure 7. The left hand panel shows a set of data points and
the GP posterior distributionexcludingobservation of the right-most datum. The right panel depicts the same
inferenceincluding this last datum. We see how the posterior variance shrinks aswe make the observation.
The previous example showed how making an observation, evenof a noisy timeseries, shrinks our uncertainty
associated with beliefs about the function local to the observation. We can see this even more clearly if we
successively extrapolate until we see another datum, as shown in Figure 8. Rather than observations coming on
a fixed time-interval grid we can imagine a scenario in which observations are costly to acquire, and we wish
to find a natural balance between sampling and reducing uncertainty in the functions of interest. This concept
leads us naturally in two directions. Firstly for the activerequestingof observations when our uncertainty has
grown beyond acceptable limits2 and secondly to dropping previously observed samples from our model. The
computational cost of Gaussian Processes is dominated by the inversion of a covariance matrix (as in Equation
9) and hence scales with the cube of the number of retained samples. This leads to an adaptivesample retention.
Once more the balance is problem specific, in that it relies onthe trade-off between computational speed and

2Of course these limits are related to the cost of sampling andobservation and the manner in which uncertainty in the timeseries
can be balanced against this cost.
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Figure 5: (left panel) Given six noisy data points (error bars are indicated with vertical lines), we are interested
in estimating a seventh atx∗ = 0.2. (right panel) The solid line indicates an estimation ofy∗ for x∗ across the
range of the plot. Along with the posterior mean, the posterior uncertainty,±2σ is shaded.

(for example) forecasting uncertainty. The interested reader is pointed to [2] for more detailed discussions. We
provide some examples of active data selection in operationin real problem domains later in this paper.

3.3 Covariance and mean functions

The prior mean of a GP represents whatever we expect for our function before seeing any data. The covariance
function of a GP specifies the correlation between any pair ofoutputs. This can then be used to generate
a covariance matrix over our set of observations and predictants. Fortunately, there exist a wide variety of
functions that can serve in this purpose [3, 4], which can then be combined and modified in a further multitude
of ways. This gives us a great deal of flexibility in our modelling of functions, with covariance functions
available to model periodicity, delay, noise and long-termdrifts for example.

3.3.1 Covariance functions

In the following section we briefly describe commonly used kernels. We start with simple white noise, then
consider commonstationarycovariances, both uni- and multi-dimensional. We finish this section with periodic
and quasi-periodic kernel functions. The interested reader is referred to [1] for more details. Although this is
not an exclusive list by any means, it provides most of the covariance functions suitable for timeseries analysis.
We note once more that sums (and products) of valid covariance kernels give valid covariance functions (i.e.
the resultant covariance matrices are positive (semi-) definite) and so we may entertain with ease multiple
explanatory hypotheses. The price we pay lies in the extra complexity of handling the increased number of
hyperparameters.

White noise with varianceσ2 is represented by:

kWN(xi, xj) = σ2I, (12)

whereI is the identity matrix. This kernel allows us to entertain uncertainty in our observed data and is so
typically found added to other kernels (as we saw in Equation3).
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Figure 6: (a) Estimation ofy∗ (solid line) and±2σ posterior deviance for a function with short-term and long-
term dynamics, and (b) long-term dynamics and a periodic component. Observations are shown as blue crosses.
As in the previous example, we finely evaluate the posterior GP to show both interpolation and extrapolation.
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Figure 7: A simple example of a Gaussian process applied sequentially. The left panel shows the posterior
mean and±2σ prior to observing the rightmost datum and the right panelafter observation.

The squared exponential (SE) kernel is given by:

kSE = h2 exp

[

−
(

xi − xj
λ

)2
]

(13)

whereh is an output-scale amplitude andλ is an input (length, or time) scale. This gives rather smoothvaria-
tions with a typical time-scale ofλ and admits functions drawn from the GP that are infinitely differentiable.

The rational quadratic (RQ) kernel is given by:

kRQ(xi, xj) = h2
(

1 +
(xi − xj)

2

αλ2

)−α

(14)

whereα is known as the index. Rasmussen & Williams [1] show that thisis equivalent to a scale mixture of
squared exponential kernels with different length scales,the latter distributed according to a Beta distribution
with parametersα andλ−2. This gives variations with a range of time-scales, the distribution peaking around

9



0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8: The GP is run sequentially making forecasts until anew datum is observed. Once we make an
observation, the posterior uncertainty drops to zero (assuming noiseless observations).

λ but extending to significantly longer period (but remainingrather smooth). Whenα → ∞, the RQ kernel
reduces to the SE kernel with length scaleλ.

Matérn The Matérn class of covariance functions are defined by

kM(xi, xj) = h2
1

Γ(ν)2ν−1

(

2
√
ν
|xi − xj|

λ

)

Bν

(

2
√
ν
|xi − xj|

λ

)

(15)

whereh is the output-scale,λ the input-scale,Γ() is the standard Gamma function andB() is the modified
Bessel function of second order. The additional hyperparameterν controls the degree of differentiability of the
resultant functions modelled by a GP with a Matérn covariance function, such that they are only(ν+1/2) times
differentiable. Asν → ∞ so the functions become infinitely differentiable and the Matérn kernel becomes the
squared exponential one. Takingν = 1/2 gives the exponential kernel,

k(xi, xj) = h2 exp

( |xi − xj |
λ

)

(16)

which results in functions which are only once differentiable, and correspond to the Ornstein-Ulenbeck pro-
cess, the continuous time equivalent of a first order autoregressive model, AR(1). Indeed, as discussed in [1],
timeseries models corresponding to AR(p) processes are discrete time equivalents of Gaussian process models
with Matérn covariance functions withν = p− 1/2.

Multiple inputs and outputs The simple distance metric,|x1 − x2|, used thus far clearly only allows for
the simplest case of a one dimensional inputx, which we have hitherto tacitly assumed to represent a time
measure. In general, however, we assume our input space has finite dimension and writex(e) for the value of
theeth element inx and denotex(e)i as the value of theeth element at theith index point. In such scenarios we
entertain multiple exogenous variables. Fortunately, it is not difficult to extend covariance functions to allow
for these multiple input dimensions. Perhaps the simplest approach is to take a covariance function that is the
product of one-dimensional covariances over each input (the product correlationrule [5]),

k(xi, xj) =
∏

e

k(e)
(

x
(e)
i , x

(e)
j

)

(17)

wherek(e) is a valid covariance function over theeth input. As the product of covariances is a covariance,
so Equation (17) defines a valid covariance over the multi-dimensional input space. We can also introduce
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distance functions appropriate for multiple inputs, such as the Mahalanobis distance:

d(M)(xi,xj ;Σ) =
√

(xi − xj)TΣ
−1(xi − xj), (18)

whereΣ is a covariance matrix over the input variable vectorx. Note that this is ahyperparameterof the model,
and should not be confused with covariances formed from covariance functions (which are always denoted by
K in this paper). IfΣ is a diagonal matrix, its role in Equation 18 is simply to provide an individual input
scaleλe =

√

Σ(e, e) for theeth dimension. However, by introducing off-diagonal elements, we can allow for
correlations amongst the input dimensions. To form the multi-dimensional kernel, we simply replace the scaled
distance measure|xi − xj|/λ of, e.g. Equation 13 withd(M)(x1,x2) from Equation 18 above.

For multi-dimensional outputs, we consider a multi-dimensional space of timeseries with a labell, which
indexes the timeseries, and time denoted byx, hence forming the 2d input domain of[l, x]. We will then exploit
the fact that a product of covariance functions is a covariance function in its own right, and write

k([lm, xi], [ln, xj ]) = kx(xi, xj) kl(lm, ln) ,

taking covariance function terms over both time and timeseries label. If the number of timeseries is not too
large, we can arbitrarily represent the covariance matrix over the labels using the spherical decomposition [6].
This allows us to arbitrarily represent any possible covariance over labels. More details of this approach, which
enables the dependencies between timeseries to be modelled, is found in [7] and we use this as the focus of one
of our examples in Section 4 later in this paper.

Periodic and quasi-periodic kernels Note that a valid covariance function under any arbitrary (smooth) map
remains a valid covariance function [8, 1]. For any functionu : x → u(x), a covariance functionk() defined
the range ofx gives rise to a valid covariancek′() over the domain ofu. Hence we can use simple, stationary
covariances in order to construct more complex (possibly non-stationary) covariances. A particularly relevant
example of this,

u(x) = (u(a)(x), u(b)(x)) =
(

cos
(

2π
x

T

)

, sin
(

2π
x

T

)

)

, (19)

allows us to modify our simple covariance functions above tomodel periodic functions. We can now take this
covariance overu as a valid covariance overx. As a result, we have the covariance function, for the example
of the squared exponential (13),

kper-SE(xj , xj ;h,w, T ) = h2 exp

(

− 1

2w2
sin2

(

π
∣

∣

∣

xj − xj
T

∣

∣

∣

)

)

. (20)

In this case the output scaleh serves as the amplitude andT is the period. The hyperparameterw is a “rough-
ness” parameter that serves a similar role to the input scaleλ in stationary covariances. With this formulation,
we can perform inference about functions of arbitrary roughness and with arbitrary period. Indeed a periodic
covariance functwion can be constructed from any kernel involving the squared distance(xi−xj)

2 by replacing
the latter withsin2[π(xi − xj)/T ], whereT is the period. The length scalew is now relative to the period,
and lettingw → ∞ gives sinusoidal variations, whilst increasingly small values ofw give periodic variations
with increasingly complex harmonic content. Similar periodic functions could be constructed from any ker-
nel. Other periodic functions could also be used, so long as they give rise to a symmetric, positive definite
covariance matrix –sin2 is merely the simplest.

As described in [1], valid covariance functions can be constructed by adding or multiplying simpler covari-
ance functions. Thus, we can obtain aquasi-periodickernel simply by multiplying a periodic kernel with one
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Figure 9: Random draws from Gaussian processes with different kernels. From left to right, the top row shows
the squared exponential kernel, (Equation 13, withh = 1, λ = 1), the rational quadratic (Equation 14, with
h = 1, λ = 1 andα = 0.5), and a periodic kernel based on the squared exponential (Equation 20, withh = 1,
T = 2 andw = 0.5). The bottom row left panel shows a quasi-periodic kernel constructed by multiplying the
periodic kernel of Equation 13 (withh = 1, T = 2, w = 1) with the rational quadratic kernel of Equation 14
(with λ = 4 andα = 0.5). The middle and right panel in the bottom row show noisy versions of this kernel
obtained by adding, respectively, a white noise term (Equation 13, withσ = 0.2) and a squared exponential
term (Equation 13, withh = 0.1, λ = 0.1). Each line consists of equally spaced samples over the interval
[−5, 5], and is offset from the previous one by 3 for clarity. The random number generated was initiated with
the same seed before generating the samples shown in each panel.

of the basic stationary kernels described above. The latterthen specifies the rate of evolution of the periodic
signal. For example, we can multiply equation 20 with a squared exponential kernel:

kQP,SE(xi, xj) = h2 exp

(

−sin2[π(xi − xj)/T ]

2w2
− (xi − xj)

2

λ2

)

(21)

to model a quasi-periodic signal with a single evolutionarytime-scaleλ.
Examples of functions drawn from these kernels are shown in Figure 9. There are many more types of

covariance functions in use, including some (such as the Matérn family above) which are better suited to model
rougher, less smooth variations. However, the SE and RQ kernels already offer a great degree of freedom with
relatively few hyper-parameters, and covariance functions based on these are often sufficient to model the data
of interest.

Changepoints We now describe how to construct appropriate covariance functions for functions that experi-
ence sudden changes in their characteristics. This sectionis meant to be expository; the covariance functions
we describe are intended as examples rather than an exhaustive list of possibilities. To ease exposition, we
assume the (single) input variable of interestx is entirely temporal. If additional features are available, they
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may be readily incorporated into the derived covariances [1].

A drastic change in covariance: Suppose a function of interest is well-behaved except for a drastic change at
the pointxc, which separates the function into two regions with associated covariance functionsk1(·, ·; θ1)
beforexc andk2(·, ·; θ2) after, whereθ1 andθ2 represent the values of any hyperparameters associated with k1
andk2, respectively. If the change is so drastic that the observations beforexc are completely uninformative
about the observations after the changepoint. The new set ofhyperparameters for this covariance function
contain knowledge about the original hyperparameters of the covariance functions as well as the location of the
changepoint. This covariance function is easily seen to be semi-positive definite and hence admissible [9, 10].

A smooth drastic change in covariance: Suppose acontinuous functionof interest is best modelled by
different covariance functions, before and after a changepoint xc. The function values after the changepoint
are conditionally independent of the function values before, given the value at the changepoint itself. This
represents an extension to the drastic covariance described above; our two regions can be drastically different,
but we can still enforce smoothness across the boundary between them. We call this covariance function
the continuous conditionally independentcovariance function. This covariance function can be extended to
multiple changepoints, boundaries in multi-dimensional spaces, and also to cases where function derivatives
are continuous at the changepoint. For proofs and details ofthis covariance function the reader is invited to
see [11, 12].

A sudden change in input scale: Suppose a function of interest is well-behaved except for a drastic
change in the input scaleλ at timexc, which separates the function into two regions with different degrees of
long-term dependence.

Let λ1 andλ2 represent the input scale of the function before and after the changepoint atxc, respectively.
Suppose we wish to model the function with an isotropic covariance functionk(), for example of SE form, that
would be appropriate except for the change in input scale. Wemay model the function using the covariance
functionkD defined by

kD(xi, xj ; {h2, λ1, λ2, xc}) =















k(xi, xj; {h, λ1}) (xi, xj < xc)

k(xi, xj; {h, λ2}) (xi, xj ≥ xc)

h2κ
(

|xc−xi|
λ1

+
|xc−xj |

λ2

)

(otherwise)

. (22)

in which κ() represents, for example, the exponentiation of the square of the argument; hence forming a full
covariance function.

A sudden change in output scale: Suppose a function of interest is well-behaved except for a drastic
change in the output scaleh at timexc, which separates the function into two regions.

Let y(x) represent the function of interest and leth1 andh2 represent the output scale ofy(x) before and
after the changepoint atxc, respectively. Suppose we wish to model the function with anisotropic covariance
functionk() that would be appropriate except for the change in output scale. To derive the appropriate covari-
ance function, we modely(x) as the product of a function with unit output scale,g(x), and a piecewise-constant
scaling function,a(x), defined by

a(x;xc) =

{

h1 x < xc

h2 x ≥ xc
. (23)

Given the modely(x) = a(x)g(x), the appropriate covariance function fory is immediate. We may use the
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covariance functionkE() defined by

kE(xi, xj ; {h21, h22, σ, xc}) =

a(x1;xc)a(x2;xc)k(xi, xj ; {1, λ}) =











k(xi, xj ; {h1, λ}) (xi, xj < xc)

k(xi, xj ; {h2, λ}) (xi, xj ≥ xc)

k(xi, xj ; {(h1h2)
1

2 , λ}) (otherwise)

. (24)

The form ofkE() follows from the properties of covariance functions, see [1] for more details.

A change in observation likelihood: Hitherto, we have takenthe observation likelihood as being de-
fined by a single GP. We now consider other possible observation models, motivated by fault detection and
removal [11, 12]. A sensor fault essentially implies that the relationship between the underlying, or plant,
processy(x) and the observed valuesx is temporarily complicated. In situations where a model of the fault
is known, the faulty observations need not be discarded; they may still contain valuable information about
the plant process. We distinguishfault removal, for which the faulty observations are discarded, fromfault
recovery, for which the faulty data is utilised with reference to a model of the fault.

Perhaps the simplest fault mode is that ofbias, in which the readings are simply offset from the true values
by some constant amount (and then, potentially, further corrupted by additive Gaussian noise). Clearly knowing
the fault model in this case will allow us to extract information from the faulty readings; here we are able to
perform fault recovery [11, 12]. In this scenario the value of the offset and the start and finish times for the fault
are additional hyperparameters to be included in the model.

Another simple fault model is that of astuck value, in which our faulty readings return a constant (stuck)
value regardless of the actual underlying true process. We consider the slightly more general model in which
those faulty observations may also include a Gaussian noisecomponent on top of the constant value. Here,
of course, we can hope only for fault removal; the faulty readings are not at all pertinent to inference about
the underlying variables of interest. This model has an extra hyperparameter, an indicator variable, which is
unity if at timexi we are within the faulty region, and is equal to zero otherwise. Here, as for the biased case,
we also have additional hyperparameters corresponding to the stuck value and the start and finish times of the
fault. Inference proceeds over the entire hyperparameter set, with the probability distribution over the indicator
variable being of particular interest, as it encodes our posterior belief at eachxi that we are observing faulty
data.

The final fault we consider is that ofdrift. Here our sensor readings undergo a smooth excursion from
the plant process; that is, they gradually ‘drift’ away fromthe real values, before eventually returning back to
normality. Unsurprisingly, the covariance kernel has an additional drift term. The model requires additional
parameters that define the drift rate in the covariance function, as well as the fault start and finish times. With
knowledge of this model, fault recovery is certainly possible, as shown in [11, 12].

Figure 10 shows some examples of the (non-fault) changepoint covariance functions (upper row), along
with draws from the resultant GP (lower row). Each changepoint covariance function is drawn as a bold red line,
with the standard squared exponential kernel shown askSE for comparison. For comparison we fix the location
hyperparameter of all the functions tox = 500 and plot the functions over the interval from460 ≤ x ≤ 560.

3.3.2 Mean functions

As the mean function will dominate our forecasts in regions far from the data, the choice of the prior mean
function can have a profound impact on our predictions and must be chosen with this in mind. In the majority
of cases in the literature we find vague (i.e. high uncertainty) flat mean functions used. This choice is reinforced
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Figure 10: Example covariance functions (upper row) for themodelling of data with changepoints and associ-
ated draws (lower row) from the resultant GPs, indicating what kind of data that they might be appropriate for.
Each changepoint covariance function is drawn as a bold red line, with the standard squared exponential kernel
shown askSE for comparison.

by considering the prior mean function as the expectation function, prior to any observed data, of our domain
beliefs. In the vast majority of situations the symmetry of our ignorance (i.e. we are equally unsure that
a trend is up or down) leads to flat, often zero-offset, mean functions. As a simple example, we may have
domain knowledge that our functions have a linear drift term, but we do not know the magnitude or direction.
Whatever prior we place over the gradient of the drift will benecessarily symmetric and leads to a zero-mean
with variance defined by the vagueness of our priors. If we do have such domain knowledge then we are free to
incorporate this into our Gaussian Process models. For example, consider the case in which we know that the
observed timeseries consists of a deterministic componentand a n unknown additive component. Draws from
our Gaussian Process are hence:

y(x) ∼ N (m(x;θM ),K(x,x;θC)) (25)

in which the mean function,m, has hyperparametersθm that encode domain knowledge regarding the deter-
ministic component and the covariance matrixK has hyperparametersθC . For example, we may know that our
observations are obtained from an underlying exponential decay with an unknown additive function along with
coloured noise. Our mean function will hence be of the formm(x∗) = A exp(−ax∗) whereA, a are unknown
hyperparameters. Figure 11 (left panel) shows a standard squared exponential covariance GP used to for a
model for a small set of noisy data samples (red dots) drawn from a function with an underlying exponential
decay. The GP models the observed data well but long-term predictions are naturally dominated by a flat prior
mean function. In the right panel a GP with identical covariance is employed, but the mean function is that of
an exponential decay with unknown hyperparameters. Even a few data points are sufficient for the probability
distribution over the exponential hyperparameters to be inferred reasonably well leading to long-term forecasts
that are dominated by a (albeit uncertain) decay function.

15



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Figure 11: The effect of including a simple mean function. The left panel shows a GP model with a flat prior
mean and SE covariance function. The noisy observations areindicated by (red) dots. The posterior from
the GP is shown along with±2σ. In the right panel the same covariance function is used, butnow the mean
function has extra hyperparameters corresponding to an exponential decay with unknown time-constant and
scale. We see that the long-term forecasts in this example encode our prior belief in the decay function.

4 Examples

In the following examples we briefly illustrate the GaussianProcess approach to practical timeseries analysis,
highlighting the use of a variety of covariance and mean functions.

4.1 Multi-dimensional weather sensor data

The first example we provide is based on real-time data which is collected by a set of weather, sea state and
environment sensors on the south coast of the UK (see [7] for more details). The network (Bramblemet) consists
of four sensors (named Bramblemet, Sotonmet, Cambermet andChimet), each of which measures a range of
environmental variables (including wind speed and direction, air temperature, sea temperature, and tide height)
and makes up-to-date sensor measurements. We have two data streams for each variable at our disposal. The
first is the real-time, but sporadic, measurements of the environmental variables; it is these that are presented as
a multi-dimensional timeseries to the GP. Secondly we have access, retrospectively, to finer-grained data. We
use this latter dataset for assessment only.

Figure 12 illustrates the efficacy our GP prediction for a tide height dataset. In order to manage the four
outputs of our tide function (one for each sensor), we rewrite so that we have a single output and inputst, time,
andl, a sensor label, as discussed in Section 3.1 and the subsection above.

Note that our covariance over time is the sum of a periodic term and adisturbanceterm. Both are of the
Matérn form withν = 5

2 . This form is a consequence of our expectation that the tideswould be well modelled
by the superposition of a simple periodic signal and an occasional disturbance signal due to exceptional condi-
tions. Of course, for a better fit over the course of, say, a year, it would be possible to additionally incorporate
longer-term drifts and periods.

The periodT of the periodic covariance term was unsurprisingly learnt as being about half a day, whereas
for the disturbance term the time scalew was found to be about two and a half hours. Note that this latter result
is concordant with our expectations for the time scales of the weather events we intend our disturbance term to
model.

Our algorithm learned that all four sensors were very strongly correlated, with spherical decomposition of
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Figure 12: Prediction and regression of tide height data for(a) independent and (b) multi-output Gaussian
processes.

the inferred correlation elements all very close to one. Thehyperparameter matrixΣ of Equation 18 addition-
ally gives an appropriate length scale for each sensor. Overthis data set, the Chimet sensor was found to have
a length scale of1.4m, with the remainder possessing scales of close to1m. From the inference we determined
weather events to have induced changes in tide height on the order of20%.

We also make allowances for the prospect of relative latencyamongst the sensors by incorporating delay
variables, introduced by a vector of delays in time observations [7]. We found that the tide signals at the
Cambermet and Chimet stations were delayed by about10 minutes relative to the other two. This makes
physical sense – the Bramblemet and Sotonmet stations are located to the west of the Cambermet and Chimet
stations, and the timing of high tide increases from west to east within the English channel.

Note the performance of our multi-output GP formalism when the Bramblemet sensor drops out att = 1.45
days. In this case, the independent GP quite reasonably predicts that the tide will repeat the same periodic
signal it has observed in the past. However, the GP can achieve better results if it is allowed to benefit from
the knowledge of the other sensors’ readings during this interval of missing data. Thus, in the case of the
multi-output GP, byt = 1.45 days, the GP has successfully determined that the sensors are all very strongly
correlated. Hence, when it sees an unexpected low tide in theChimet sensor data (caused in this case by
the strong northerly wind), these correlations lead it to infer a similarly low tide in the Bramblemet reading.
Hence, the multi-output GP produces significantly more accurate predictions during the missing data interval,
with associated smaller error bars. Exactly the same effectis seen in the later predictions of the Chimet tide
height, where the multi-output GP predictions use observations from the other sensors to better predict the high
tide height att = 2.45 days.

Note also that there are two brief intervals of missing data for all sensors just after both of the first two
peak tides. During the second interval, the GP’s predictions for the tide are notably better than for the first –
the greater quantity of data it has observed allows it to produce more accurate predictions. With time, the GP
is able to build successively better models for the series.
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Table 1: Predictive performances for five-day Bramblemet tide height dataset. We note the superior perfor-
mance of the GP compared to a more standard Kalman filter model.

Algorithm RMSE (m) NMSE (dB)
Naı̈ve 7.5×10−1 -2.1
Kalman filter 1.7×10−1 -15.2
Independent GPs 8.7×10−2 -20.3
Multi-output GP 3.8×10−2 -27.6

The predictive performances for our various algorithms over this dataset can be found in Table 1. For the
Kalman filter comparison, a history length of 16 observations was used to generate each prediction, since this
gave rise to the best predictive ability. However, note thatour multi-output GP which exploits correlations
between the sensors, and the periodicity in each individualsensors’ measurements, significantly outperforms
both the Kalman filter and the independent GP [7]. The naı̈ve result is obtained by repeating the last observed
sensor value as a forecast.

4.2 Active Data Selection

We now demonstrate our active data selection algorithm. Using the fine-grained data (downloaded directly
from the Bramblemet weather sensors), we can simulate how our GP would have chosen its observations had
it been in control. Results from the active selection of observations from all the four tide sensors are displayed
in Figure 13. Again, these plots depict dynamic choices; at time t, the GP must decide when next to observe,
and from which sensor, given knowledge only of the observations recorded prior tot, in an attempt to maintain
the uncertainty in tide height below 10cm. The covariance function used was that described in the previous
example, namely a sum of twoν = 5/2 Matérn covariance functions, one stationary and the otherof periodic
form. Consider first the case shown in Figure 13(a), in which separate independent GPs are used to represent
each sensor. Note that a large number of observations are taken initially as the dynamics of the sensor readings
are learnt, followed by a low but constant rate of observation. In contrast, for the multi-output case shown
in Figure 13(b), the GP is allowed to explicitly represent correlations and delays between the sensors. As
mentioned above, this data set is notable for the slight delay of the tide heights at the Chimet and Cambermet
sensors relative to the Sotonmet and Bramblemet sensors, due to the nature of tidal flows in the area. Note
that after an initial learning phase as the dynamics, correlations, and delays are inferred, the GP chooses to
sample predominantly from the undelayed Sotonmet and Bramblemet sensors3. Despite no observations of the
Chimet sensor being made within the time span plotted, the resulting predictions remain remarkably accurate.
Consequently only119 observations are required to keep the uncertainty below thespecified tolerance, whereas
358 observations were required in the independent case. This represents another clear demonstration of how
our prediction is able to benefit from the readings of multiple sensors.

4.3 Changepoint Detection

In [9, 10] a fully Bayesian framework was introduced for performing sequential time-series prediction in the
presence of changepoints. The position of a particular changepoint becomes a hyperparameter of the model

3The dynamics of the tide height at the Sotonmet sensor are more complex than the other sensors due to the existence of a ‘young
flood stand’ and a ‘double high tide’ in Southampton. For thisreason, the GP selects Sotonmet as the most informative sensor and
samples it most often.
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Figure 13: Comparison of active sampling of tide data using (a) independent and (b) multi-output Gaussian
processes. Note that, in the case of multi-output GPs, one sensor reading (Sotonmet) slightly leads the other
readings and is hence sampled much more frequently. In some cases, such as the Cambermet readings, only
occasional samples are taken yet the GP forecasts are excellent.

which is obtained using Bayesian inference. If the locations of changepoints in the data are of interest, the full
posterior distribution of these hyperparameters can be obtained given the data. The result is a robust time-series
prediction algorithm that makes well-informed predictions even in the presence of sudden changes in the data.
If desired, the algorithm additionally performs changepoint and fault detection as a natural byproduct of the
prediction process. In this section we briefly present some exemplar data sets and the associated changepoint
inference.

4.3.1 Nile data set

We first consider a canonical changepoint dataset, the minimum water levels of the Nile river during the period
AD 622–1284 [13]. Several authors have found evidence supporting a change in input scale for this data
around the year AD 722 [14]. The conjectured reason for this changepoint is the construction in AD 715 of a
new device (a “nilometer”) on the island of Roda, which affected the nature and accuracy of the measurements.

We performed one-step lookahead prediction on this datasetusing the input-scale changepoint covariance
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KD (22). The results can be seen in Figure 14. The upper plot shows our one-step predictions on the dataset,
including the mean and±σ error bars. The lower plot shows the posterior distributionof the number of years
since the last changepoint. A changepoint around AD 720–722is clearly visible and agrees with previous
results [14].
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Figure 14: Prediction for the Nile dataset using input-scale changepoint covariance (left panel) and the corre-
sponding posterior distribution for time since changepoint (right panel).

4.3.2 1972-1975 Dow-Jones industrial average

As a second canonical changepoint dataset we present the series of daily returns of the Dow-Jones industrial
average between the 3rd of July, 1972 and the 30th of June, 1975 [15]. This period included a number of
newsworthy events that had significant macroeconomic influence, as reflected in the Dow-Jones returns.

We performed sequential one-step prediction on this data using a GP with a diagonal covariance that as-
sumed all measurements were IID (as under the efficient market hypothesis, returns should be uncorrelated).
However, the variance of these observations was assumed to undergo changes, and as such we used a covari-
ance that incorporated such changes in output scale. As such, we had three hyperparameters to marginalise: the
variance before the changepoint, the variance after the changepoint and, finally, the location of that changepoint.

Our results are plotted in Figure 15. Our model clearly identifies the important changepoints that likely
correspond to the commencement of the OPEC embargo on the 19th of October, 1973, and the resignation of
Richard Nixon as President of the U.S.A. on the 9th of August,1974. A weaker changepoint is identified early
in 1973, which [15] speculate is due to the beginning of the Watergate scandal.

4.4 Quasi-periodic modelling of stellar light curves

Many Sun-like stars display quasi-periodic brightness variations on time-scales of days to weeks, with ampli-
tudes ranging from a few parts per million to a few percent. These variations are caused by the evolution and
rotational modulation of magnetically active regions, which are typically fainter than the surrounding photo-
sphere. In this case, we may expect a range of both periodic covariance scalesw and evolutionary time-scales
λ, corresponding to different active region sizes and life-times respectively. This can be achieved by replacing
one or both of the squared exponential (SE) kernels in equation 13 by rational quadratic (RQ) kernels (equation
14). Finally, we can also allow for short-term irregular variability or correlated observational noise by includ-
ing a separate, additive SE or RQ kernel. For example, [16] used a Gaussian Process with such quasi-periodic
kernels to model the total irradiance variations of the Sun in order to predict its radial velocity variations.

In Figure 16, we show the results of a quasi-periodic Gaussian Process regression to photometric observa-
tions of the well-known planet-host star HD 189733, taken from [17]. The kernel used consists of a periodic
SE component (equation 21) multiplied by a RQ term (equation14) to allow for a range of evolutionary time-
scales, plus an additive white noise term (equation 12). Inference over the hyperparameters of interest yielded
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Figure 15: Online (sequential) one-step predictions (top panel) and posterior for the location of changepoint
for the Dow-Jones industrial average data using an output-scale changepoint covariance (lower panel).

expected values ofh = 6.68 mmag,T = 11.86 days,w = 0.91, α = 0.23, λ = 17.81 days andσ = 2.1
mmag, whereσ is the amplitude of the white noise term. Our period is in excellent agreement with [17]. The
relatively long periodic length-scalew indicates that the variations are dominated by a small number of fairly
large active regions. The evolutionary term has a relatively short time-scale,λ, but a shallow indexα, which
is consistent with the notion that the active regions on thisstar evolve relatively fast and/or that, as in the Sun,
active regions located at different latitudes have different rotation rates (known as differential rotation).

Figure 16: Predictive distribution for a quasi-periodic Gaussian process process model using a mixed SE
and RQ kernel, trained and conditioned on observations madewith the 0.8m APT telescope [17] using the
Strömgrenb andy filters. The black dots represent the observations, the red line is the mean of the predictive
posterior distribution and the shaded region encompasses the±σ interval.
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4.5 Modelling light curves of transiting exoplanets

One of the most successful ways of discovering and characterising extra-solar planets (i.e. planets not in our
solar system) is through observing transit light curves. A transit occurs when a planet periodically passes
between its host star and the Earth blocking a portion of the stellar light, and produces a characteristic dip in
the light curve. From this transit we can measure such physical parameters as the planet-to-star radius ratio
and the inclination of the orbit. Whilst transit light curves are readily described by a deterministic parametric
function, real observations are corrupted by systematic noise in the detector, external state variables (such as
the temperature of the detector, orbital phase, position ofthe host star on the CCD array etc), as well as the
underlying flux variability of the host star. As it is not possible to produce a deterministic model to account for
all these systematics, a Gaussian Process may be used to place a distribution over possible artefact functions,
modelling correlated noise as well as subtle changes in observed light curves due to external state variables.
We hence encode the transit curve as the mean function of a GP.The covariance function has inputs given
by time and external state variables (hence this is a multi-input, single output model. By integrating out our
uncertainty (see Section 5) in the hyperparameters of the GP(which model all the systematic artefacts and
noise processes), we can gain much more realistic inferenceof probability distribution of the transit function
parameters (the hyperparameters of the mean function). Fora detailed discussion of the application of Gaussian
Processes to transit light curves see [18], in which the instrumental systematics are represented by a GP with a
squared exponential kernel (Equation 13) and input parameters representing the external state variables. Robust
inference of transit parameters is required to perform detailed studies of transiting systems, including the search
for atomic and molecular signatures in the atmospheres of exoplanets. Figure 17 shows this GP model fitting
to the timeseries of observations. More details are found in[18].
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Figure 17: As an example of a complex mean function, we here model data from an exoplanet transit light
curve. The data is fitted with a GP with an exoplanet transit mean function and a squared exponential covariance
kernel to model the correlated noise process and the effectsof external state variables. The shaded regions are
at±1, 2σ from the posterior mean.
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Figure 18: Samples (black dots) obtained by optimising the log-likelihood (grey) using a global optimiser, and
in blue, the maximum likelihood approximation of the likelihood surface.

5 Marginalising Hyperparameters

As Gaussian Process models have a number of hyperparameters, in the covariance function (and the mean
function) that we mustmarginalise4 over in order to perform inference. That is, the quantity we are interested
in is

p(y⋆|y) =
∫

p(y⋆|y, θ) p(y|θ) p(θ)dθ
∫

p(y|θ) p(θ)dθ (26)

which requires two integrals to be evaluated. These are bothtypically non-analytic, due to the complex form of
the likelihoodp(y|θ) when considered as a function of hyperparametersθ. As such, we are forced to resort to
approximate techniques.

Approximating an integral requires two problems to be solved. First, we need to make observations of the
integrand, to explore it, and then those observations need to be used to construct an estimate for the integral.
There are a number of approaches to both problems.

Optimising an integrand (see Figure 18) is one fairly effective means of exploring it: we will take samples
around the maxima of the integrand, which are likely to describe the majority of the mass comprising the
integral. A local optimiser, such as a gradient ascent algorithm, will sample the integrand around the peak
local to the start point, giving us information pertinent toat least that part of the integrand. If we use a global
optimiser, our attempts to find the global extremum will ultimately result in all the integrand being explored, as
desired.

Maximising an integrand is most common when performingmaximum likelihood. The integrands in (26)
are proportional to the likelihoodp(y|θ): if the prior p(θ) is relatively flat, the likelihood will explain most of
the variation of the integrands as a function ofθ. Maximising the likelihood hence gives a reasonable means
of integrand exploration, as above. Maximum likelihood, however, specifies a generally unreasonable means
of integral estimation: the likelihood is approximated as aDirac delta function located at theθ that maximised
the likelihood. As per Figure 18, this completely ignores the width of the integrands, leading to potentially
problematic features [19]. This approximation finds use when the likelihood is very peaked, as is the case when
we have a great deal of data.

A slightly more sophisticated approach to integral estimation is to take aLaplace approximation, which fits
a Gaussian around the maximum likelihood peak. This gives atleast some representation of the width of the
integrands. Yet further sophistication is displayed by themethods ofVariational Bayes[20], which treat the
fitting of probability distributions to the problematic terms in our integrands as an optimisation problem.

4The process of marginalisation refers to “integrating out”uncertainty. For example, givenp(y, θ) = p(y|θ)p(θ) we may obtain
p(y) by marginalising over the unknown parameterθ, such thatp(y) =

∫
p(y|θ)p(θ)dθ.
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Figure 19: Samples obtained by taking draws from the posterior using an MCMC method.
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Figure 20: A set of samples that would lead to unsatisfactorybehaviour from simple Monte Carlo.

Monte Carlo techniques represent a very popular means of exploring an integrand.Simple Monte Carlo
draws random samples from the priorp(φ), to which our integrands are proportional. Note that (26) can be
rewritten as

p(y⋆|y) =
∫

p(y⋆|y, θ) p(θ|y) dθ . (27)

More sophisticatedMarkov Chain Monte Carlotechniques [21] attempt to generate samples from the hyperpa-
rameter posterior

p(θ|y) = p(y|θ) p(θ)
∫

p(y|θ) p(θ)dθ , (28)

to which (27) is proportional (Figure 19 illustrates samples drawn using such a method). Sampling in this way
ensures that we have many samples where the prior/posterioris large, and hence, where our integrands are
likely to be large. This is a particular concern for multidimensional integrals, where the problem is complicated
by the ‘curse of dimensionality’ [22]. Essentially, the volume of space that could potentially be explored is
exponential in its dimension. However, a probability distribution, which must always have a total probability
mass of one, will be highly concentrated in this space; ensuring our samples are likewise concentrated is a
great boon. Moreover, Monte Carlo sampling ensures a non-zero probability of obtaining samples from any
region where the prior is non-zero. This means that we can achieve some measure of broader exploration of
our integrands.

Monte Carlo, does not, however, provide a very satisfactorymeans of integral estimation: it simply approx-
imates the integral as the average over the obtained samples. As discussed by [23], this ignores the information
content contained in the locations of the samples, leading to unsatisfactory behaviour. For example, imagine
that we had three samples, two of which were identical:θ1 = θ2. In this case, the identical value will receive
2/3 of the weight, whereas the equally useful other value will receive only1/3. This is illustrated in Figure 20.
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Figure 21: Bayesian quadrature fits a GP to the integrand, andthereby performs inference about the integral.

In attempt to address these issues, Bayesian quadrature [24, 25] provides a model-based means of integral
estimation. This approach assumes Gaussian processes overthe integrands, using the obtained samples to
determine a distribution for the integrals (see Figure 21).This probabilistic approach means that we can use
the obtained variance in the integral as a measure of our confidence in its estimate.

6 Conclusion

In this paper we have presented a brief outline of the conceptual and mathematical basis of Gaussian Process
modelling of timeseries. As ever, a practical implementation of the ideas concerned requires jumping algorith-
mic rather than theoretical hurdles which we do not have space to discuss here. Some introductory code may
be found atftp://ftp.robots.ox.ac.uk/pub/outgoing/mebden/misc/GPtut.zipand more general code can be down-
loaded fromhttp://www.gaussianprocess.org/gpml. Space has not permitted discussion of exciting recent trends
in Gaussian Process modelling which allow for more explicitincorporation of differential equations governing
the system dynamics (either observed or not), such asLatent Force Models[26]. Further extensions, using
Gaussian Processes as building blocks in more complex probabilistic models are of course possible and recent
research has also highlighted the use of GPs for numerical integration, global optimisation, mixture-of-experts
models, unsupervised learning models and much more.
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